Un-dyed, unscented paraffin candles are odorless and bluish-white. Paraffin wax was first created by Carl Reichenbach in Germany in 1830 and marked a major advancement in candlemaking technology, as it burned more cleanly and reliably than tallow candles and was cheaper to produce.<ref name="auto">Template:Cite web</ref>
In chemistry, paraffin is used synonymously with alkane, indicating hydrocarbons with the general formula CnH2n+2. The name is derived from Latinparum ("very little") + affinis, meaning "lacking affinity" or "lacking reactivity", referring to paraffin's unreactive nature.<ref>Template:Cite book</ref>
Paraffin wax is mostly found as a white, odorless, flavourless, waxy solid, with a typical melting point between about Template:Convert,<ref>Template:Cite book This can vary widely, even outside the quoted range, according to such factors as oil content and crystalline structure.</ref> and a density of around 900 kg/m3.<ref name=kayelabymech>Template:Cite web</ref> It is insoluble in water, but soluble in ether, benzene, and certain esters. Paraffin is unaffected by most common chemical reagents but burns readily.<ref>Template:Cite book</ref> Its heat of combustion is 42 MJ/kg.<ref>Template:Cite journal</ref>
If pure paraffin wax melted to the approximate flash point in a half open glass vessel which is then suddenly cooled down, then its vapors may autoignite as result of reaching boiling liquid pressure.<ref>Template:Cite web</ref>
Paraffin wax was first created in 1830 by German chemist Karl von Reichenbach when he attempted to develop a method to efficiently separate and refine waxy substances naturally occurring in petroleum. Paraffin represented a major advance in the candle-making industry because it burned cleanly and was cheaper to manufacture than other candle fuels such as beeswax and tallow. Paraffin wax initially suffered from a low melting point. This was remedied by adding stearic acid. The production of paraffin wax enjoyed a boom in the early 20th century due to the growth of the oil and meatpacking industries, which created paraffin and stearic acid as byproducts.<ref name="auto"/>
The feedstock for paraffin is slack wax, which is a mixture of oil and wax, a byproduct from the refining of lubricating oil.
The first step in making paraffin wax is to remove the oil (de-oiling or de-waxing) from the slack wax. The oil is separated by crystallization. Most commonly, the slack wax is heated, mixed with one or more solvents such as a ketone and then cooled. As it cools, wax crystallizes out of the solution, leaving only oil. This mixture is filtered into two streams: solid (wax plus some solvent) and liquid (oil and solvent). After the solvent is recovered by distillation, the resulting products are called "product wax" (or "press wax") and "foots oil". The lower the percentage of oil in the wax, the more refined it is considered to be (semi-refined versus fully refined).<ref>Template:Cite web</ref> The product wax may be further processed to remove colors and odors. The wax may finally be blended together to give certain desired properties such as melt point and penetration. Paraffin wax is sold in either liquid or solid form.<ref>Template:Cite web</ref><ref>Template:Cite web</ref><ref>Template:Cite web</ref>
In industrial applications, it is often useful to modify the crystal properties of the paraffin wax, typically by adding branching to the existing carbon backbone chain. The modification is usually done with additives, such as EVA copolymers, microcrystalline wax, or forms of polyethylene. The branched properties result in a modified paraffin with a higher viscosity, smaller crystalline structure, and modified functional properties. Pure paraffin wax is rarely used for carving original models for casting metal and other materials in the lost wax process, as it is relatively brittle at room temperature and presents the risks of chipping and breakage when worked. Soft and pliable waxes, like beeswax, may be preferred for such sculpture, but "investment casting waxes," often paraffin-based, are expressly formulated for the purpose.
In a histology or pathology laboratory, paraffin wax is used to impregnate tissue prior to sectioning thin samples. Water is removed from the tissue through ascending strengths of alcohol (75% to absolute), and then the alcohol is cleared in an organic solvent such as xylene. The tissue is then placed in paraffin wax for several hours, then set in a mold with wax to cool and solidify. Sections are then cut on a microtome.
Anti-caking agent, moisture repellent, and dustbinding coatings for fertilizers
Antiozonant agents: blends of paraffin and micro waxes are used in rubber compounds to prevent cracking of the rubber; the admixture of wax migrates to the surface of the product and forms a protective layer. The layer can also act as a release agent, helping the product separate from its mould.<ref>Template:Harv</ref>