Jump to content

Lah number

From Niidae Wiki

Template:Short description Template:Use American English

File:Lah numbers.svg
Illustration of the unsigned Lah numbers for n and k between 1 and 4

In mathematics, the (signed and unsigned) Lah numbers are coefficients expressing rising factorials in terms of falling factorials and vice versa. They were discovered by Ivo Lah in 1954.<ref>Template:Cite journal</ref><ref>John Riordan, Introduction to Combinatorial Analysis, Princeton University Press (1958, reissue 1980) Template:Isbn (reprinted again in 2002 by Dover Publications).</ref> Explicitly, the unsigned Lah numbers <math>L(n, k)</math> are given by the formula involving the binomial coefficient

<math display="block"> L(n,k) = {n-1 \choose k-1} \frac{n!}{k!}</math>

for <math>n \geq k \geq 1</math>.

Unsigned Lah numbers have an interesting meaning in combinatorics: they count the number of ways a set of <math display="inline">n</math> elements can be partitioned into <math display="inline">k</math> nonempty linearly ordered subsets.<ref>Template:Cite journal</ref> Lah numbers are related to Stirling numbers.<ref>Template:Cite book</ref>

For <math display="inline">n \geq 1</math>, the Lah number <math display="inline">L(n, 1)</math> is equal to the factorial <math display="inline">n!</math> in the interpretation above, the only partition of <math display="inline">\{1, 2, 3 \}</math> into 1 set can have its set ordered in 6 ways:<math display="block">\{(1, 2, 3)\}, \{(1, 3, 2)\}, \{(2, 1, 3)\}, \{(2, 3, 1)\}, \{(3, 1, 2)\}, \{(3, 2, 1)\}</math><math display="inline">L(3, 2)</math> is equal to 6, because there are six partitions of <math display="inline">\{1, 2, 3 \}</math> into two ordered parts:<math display="block">\{1, (2, 3) \}, \{1, (3, 2) \}, \{2, (1, 3) \}, \{2, (3, 1) \}, \{3, (1, 2) \}, \{3, (2, 1) \}</math><math display="inline">L(n, n)</math> is always 1 because the only way to partition <math display="inline">\{1, 2, \ldots, n\}</math> into <math>n</math> non-empty subsets results in subsets of size 1, that can only be permuted in one way. In the more recent literature,<ref>Template:Cite arXiv</ref><ref>Template:Cite journal</ref> KaramataKnuth style notation has taken over. Lah numbers are now often written as<math display="block">L(n,k) = \left\lfloor {n \atop k} \right\rfloor</math>

Table of values

[edit]

Below is a table of values for the Lah numbers:

Template:Diagonal split header 0 1 2 3 4 5 6 7 8 9 10
0 1
1 0 1
2 0 2 1
3 0 6 6 1
4 0 24 36 12 1
5 0 120 240 120 20 1
6 0 720 1800 1200 300 30 1
7 0 5040 15120 12600 4200 630 42 1
8 0 40320 141120 141120 58800 11760 1176 56 1
9 0 362880 1451520 1693440 846720 211680 28224 2016 72 1
10 0 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 1

The row sums are <math display="inline">1, 1, 3, 13, 73, 501, 4051, 37633, \dots</math> Template:OEIS.

Rising and falling factorials

[edit]

Let <math display="inline">x^{(n)}</math> represent the rising factorial <math display="inline">x(x+1)(x+2) \cdots (x+n-1)</math> and let <math display="inline">(x)_n</math> represent the falling factorial <math display="inline">x(x-1)(x-2) \cdots (x-n+1)</math>. The Lah numbers are the coefficients that express each of these families of polynomials in terms of the other. Explicitly,<math display="block">x^{(n)} = \sum_{k=0}^n L(n,k) (x)_k</math>and<math display="block">(x)_n = \sum_{k=0}^n (-1)^{n-k} L(n,k)x^{(k)}.</math>For example,<math display="block">x(x+1)(x+2) = {\color{red}6}x + {\color{red}6}x(x-1) + {\color{red}1}x(x-1)(x-2)</math>and<math display="block">x(x-1)(x-2) = {\color{red}6}x - {\color{red}6}x(x+1) + {\color{red}1}x(x+1)(x+2),</math>

where the coefficients 6, 6, and 1 are exactly the Lah numbers <math>L(3, 1)</math>, <math>L(3, 2)</math>, and <math>L(3, 3)</math>.

Identities and relations

[edit]

The Lah numbers satisfy a variety of identities and relations.

In KaramataKnuth notation for Stirling numbers<math display="block"> L(n,k) = \sum_{j=k}^n \left[{n\atop j}\right] \left\{{j\atop k}\right\}</math>where <math display="inline">\left[{n\atop j}\right]</math> are the unsigned Stirling numbers of the first kind and <math display="inline">\left\{{j\atop k}\right\}</math> are the Stirling numbers of the second kind.

<math> L(n,k) = {n-1 \choose k-1} \frac{n!}{k!} = {n \choose k} \frac{(n-1)!}{(k-1)!} = {n \choose k} {n-1 \choose k-1} (n-k)!</math>
<math> L(n,k) = \frac{n!(n-1)!}{k!(k-1)!}\cdot\frac{1}{(n-k)!} = \left (\frac{n!}{k!} \right )^2\frac{k}{n(n-k)!}</math>
<math> k(k+1) L(n,k+1) = (n-k) L(n,k)</math>, for <math>k>0</math>.

Recurrence relations

The Lah numbers satisfy the recurrence relations<math display="block"> \begin{align} L(n+1,k) &= (n+k) L(n,k) + L(n,k-1) \\ &= k(k+1) L(n, k+1) + 2k L(n, k) + L(n, k-1) \end{align} </math>where <math>L(n,0)=\delta_n</math>, the Kronecker delta, and <math>L(n,k)=0</math> for all <math>k > n</math>.

Exponential generating function

<math>\sum_{n\geq k} L(n,k)\frac{x^n}{n!} = \frac{1}{k!}\left( \frac{x}{1-x} \right)^k</math>

Derivative of exp(1/x)

The n-th derivative of the function <math>e^\frac1{x}</math> can be expressed with the Lah numbers, as follows<ref>Template:Cite journal</ref><math display="block"> \frac{\textrm d^n}{\textrm dx^n} e^\frac1x = (-1)^n \sum_{k=1}^n \frac{L(n,k)}{x^{n+k}} \cdot e^\frac1x.</math>For example,

<math> \frac{\textrm d}{\textrm dx} e^\frac1x = - \frac{1}{x^2} \cdot e^{\frac1x}</math>

<math> \frac{\textrm d^2}{\textrm dx^2}e^\frac1{x} = \frac{\textrm d}{\textrm dx} \left(-\frac1{x^2} e^{\frac1x} \right)= -\frac{-2}{x^3} \cdot e^{\frac1x} - \frac1{x^2} \cdot \frac{-1}{x^2} \cdot e^{\frac1x}= \left(\frac2{x^3} + \frac1{x^4}\right) \cdot e^{\frac1x}</math>

<math> \frac{\textrm d^3}{\textrm dx^3} e^\frac1{x} = \frac{\textrm d}{\textrm dx} \left( \left(\frac2{x^3} + \frac1{x^4}\right) \cdot e^{\frac1x} \right) = \left(\frac{-6}{x^4} + \frac{-4}{x^5}\right) \cdot e^{\frac1x} + \left(\frac2{x^3} + \frac1{x^4}\right) \cdot \frac{-1}{x^2} \cdot e^{\frac1x} =-\left(\frac6{x^4} + \frac6{x^5} + \frac1{x^6}\right) \cdot e^{\frac{1}{x}}</math>

[edit]

Generalized Laguerre polynomials <math>L^{(\alpha)}_n(x)</math> are linked to Lah numbers upon setting <math>\alpha = -1</math><math display="block"> n! L_n^{(-1)}(x) =\sum_{k=0}^n L(n,k) (-x)^k</math>This formula is the default Laguerre polynomial in Umbral calculus convention.<ref>Template:Cite journal</ref>

Practical application

[edit]

In recent years, Lah numbers have been used in steganography for hiding data in images. Compared to alternatives such as DCT, DFT and DWT, it has lower complexity of calculation—<math>O(n \log n)</math>—of their integer coefficients.<ref>Template:Cite journal</ref><ref>Template:Cite web</ref> The Lah and Laguerre transforms naturally arise in the perturbative description of the chromatic dispersion.<ref>Template:Cite journal</ref><ref>Template:Cite arXiv</ref> In Lah-Laguerre optics, such an approach tremendously speeds up optimization problems.

See also

[edit]

References

[edit]

<references />

[edit]

Template:Classes of natural numbers