Jump to content

Computer security

From Niidae Wiki

Template:Short description Template:Use American English Template:Use dmy dates Template:Computer hacking Template:OS

File:Computer locked.jpg
An example of a physical security measure: a metal lock on the back of a personal computer to prevent hardware tampering.

Computer security (also cybersecurity, digital security, or information technology (IT) security) is a subdiscipline within the field of information security. It consists of the protection of computer software, systems and networks from threats that can lead to unauthorized information disclosure, theft or damage to hardware, software, or data, as well as from the disruption or misdirection of the services they provide.<ref name=":2">Template:Cite journal</ref><ref>Template:Britannica</ref>

The significance of the field stems from the expanded reliance on computer systems, the Internet,<ref>Template:Cite news</ref> and wireless network standards. Its importance is further amplified by the growth of smart devices, including smartphones, televisions, and the various devices that constitute the Internet of things (IoT). Cybersecurity has emerged as one of the most significant new challenges facing the contemporary world, due to both the complexity of information systems and the societies they support. Security is particularly crucial for systems that govern large-scale systems with far-reaching physical effects, such as power distribution, elections, and finance.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

Although many aspects of computer security involve digital security, such as electronic passwords and encryption, physical security measures such as metal locks are still used to prevent unauthorized tampering. IT security is not a perfect subset of information security, therefore does not completely align into the security convergence schema.

Vulnerabilities and attacks

[edit]

Template:Main

A vulnerability refers to a flaw in the structure, execution, functioning, or internal oversight of a computer or system that compromises its security. Most of the vulnerabilities that have been discovered are documented in the Common Vulnerabilities and Exposures (CVE) database.<ref>Template:Cite web</ref> An exploitable vulnerability is one for which at least one working attack or exploit exists.<ref>Template:Cite conference</ref> Actors maliciously seeking vulnerabilities are known as threats. Vulnerabilities can be researched, reverse-engineered, hunted, or exploited using automated tools or customized scripts.<ref>Template:Cite web</ref><ref>Template:Cite web</ref>

Various people or parties are vulnerable to cyber attacks; however, different groups are likely to experience different types of attacks more than others.<ref name="crowdstrike.com">Template:Cite web</ref>

In April 2023, the United Kingdom Department for Science, Innovation & Technology released a report on cyber attacks over the previous 12 months.<ref name="Cyber breaches 2023">Template:Cite web</ref> They surveyed 2,263 UK businesses, 1,174 UK registered charities, and 554 education institutions. The research found that "32% of businesses and 24% of charities overall recall any breaches or attacks from the last 12 months." These figures were much higher for "medium businesses (59%), large businesses (69%), and high-income charities with £500,000 or more in annual income (56%)."<ref name="Cyber breaches 2023" /> Yet, although medium or large businesses are more often the victims, since larger companies have generally improved their security over the last decade, small and midsize businesses (SMBs) have also become increasingly vulnerable as they often "do not have advanced tools to defend the business."<ref name="crowdstrike.com" /> SMBs are most likely to be affected by malware, ransomware, phishing, man-in-the-middle attacks, and Denial-of Service (DoS) Attacks.<ref name="crowdstrike.com" />

Normal internet users are most likely to be affected by untargeted cyberattacks.<ref name="Cyber attacks">Template:Cite web</ref> These are where attackers indiscriminately target as many devices, services, or users as possible. They do this using techniques that take advantage of the openness of the Internet. These strategies mostly include phishing, ransomware, water holing and scanning.<ref name="Cyber attacks" />

To secure a computer system, it is important to understand the attacks that can be made against it, and these threats can typically be classified into one of the following categories:

Backdoor

[edit]

A backdoor in a computer system, a cryptosystem, or an algorithm is any secret method of bypassing normal authentication or security controls. These weaknesses may exist for many reasons, including original design or poor configuration.<ref>Template:Cite web</ref> Due to the nature of backdoors, they are of greater concern to companies and databases as opposed to individuals.

Backdoors may be added by an authorized party to allow some legitimate access or by an attacker for malicious reasons. Criminals often use malware to install backdoors, giving them remote administrative access to a system.<ref name="McAfee-2023">Template:Cite web</ref> Once they have access, cybercriminals can "modify files, steal personal information, install unwanted software, and even take control of the entire computer."<ref name="McAfee-2023" />

Backdoors can be difficult to detect, as they often remain hidden within the source code or system firmware intimate knowledge of the operating system of the computer.

Denial-of-service attack

[edit]

Denial-of-service attacks (DoS) are designed to make a machine or network resource unavailable to its intended users.<ref name="DoS guidance">Template:Cite web</ref> Attackers can deny service to individual victims, such as by deliberately entering a wrong password enough consecutive times to cause the victim's account to be locked, or they may overload the capabilities of a machine or network and block all users at once. While a network attack from a single IP address can be blocked by adding a new firewall rule, many forms of distributed denial-of-service (DDoS) attacks are possible, where the attack comes from a large number of points. In this case, defending against these attacks is much more difficult. Such attacks can originate from the zombie computers of a botnet or from a range of other possible techniques, including distributed reflective denial-of-service (DRDoS), where innocent systems are fooled into sending traffic to the victim.<ref name="DoS guidance" /> With such attacks, the amplification factor makes the attack easier for the attacker because they have to use little bandwidth themselves. To understand why attackers may carry out these attacks, see the 'attacker motivation' section.

Physical access attacks

[edit]

Template:Main A direct-access attack is when an unauthorized user (an attacker) gains physical access to a computer, most likely to directly copy data from it or steal information.<ref>Template:Cite web</ref> Attackers may also compromise security by making operating system modifications, installing software worms, keyloggers, covert listening devices or using wireless microphones. Even when the system is protected by standard security measures, these may be bypassed by booting another operating system or tool from a CD-ROM or other bootable media. Disk encryption and the Trusted Platform Module standard are designed to prevent these attacks.

Direct service attackers are related in concept to direct memory attacks which allow an attacker to gain direct access to a computer's memory.<ref name="Kroll">Template:Cite web</ref> The attacks "take advantage of a feature of modern computers that allows certain devices, such as external hard drives, graphics cards, or network cards, to access the computer's memory directly."<ref name="Kroll" />

Eavesdropping

[edit]

Eavesdropping is the act of surreptitiously listening to a private computer conversation (communication), usually between hosts on a network. It typically occurs when a user connects to a network where traffic is not secured or encrypted and sends sensitive business data to a colleague, which, when listened to by an attacker, could be exploited.<ref name="Fortinet">Template:Cite web</ref> Data transmitted across an open network allows an attacker to exploit a vulnerability and intercept it via various methods.

Unlike malware, direct-access attacks, or other forms of cyber attacks, eavesdropping attacks are unlikely to negatively affect the performance of networks or devices, making them difficult to notice.<ref name="Fortinet" /> In fact, "the attacker does not need to have any ongoing connection to the software at all. The attacker can insert the software onto a compromised device, perhaps by direct insertion or perhaps by a virus or other malware, and then come back some time later to retrieve any data that is found or trigger the software to send the data at some determined time."<ref>Template:Citation</ref>

Using a virtual private network (VPN), which encrypts data between two points, is one of the most common forms of protection against eavesdropping. Using the best form of encryption possible for wireless networks is best practice, as well as using HTTPS instead of an unencrypted HTTP.<ref>Template:Cite web</ref>

Programs such as Carnivore and NarusInSight have been used by the Federal Bureau of Investigation (FBI) and NSA to eavesdrop on the systems of internet service providers. Even machines that operate as a closed system (i.e., with no contact with the outside world) can be eavesdropped upon by monitoring the faint electromagnetic transmissions generated by the hardware. TEMPEST is a specification by the NSA referring to these attacks.

Malware

[edit]

Malicious software (malware) is any software code or computer program "intentionally written to harm a computer system or its users."<ref name="Malware-IBM">Template:Cite web</ref> Once present on a computer, it can leak sensitive details such as personal information, business information and passwords, can give control of the system to the attacker, and can corrupt or delete data permanently.<ref>Template:Cite journal</ref><ref>Template:Cite web</ref>

Types of malware

[edit]
  • Viruses are a specific type of malware, and are normally a malicious code that hijacks software with the intention to "do damage and spread copies of itself." Copies are made with the aim to spread to other programs on a computer.<ref name="Malware-IBM" />
  • Worms are similar to viruses, however viruses can only function when a user runs (opens) a compromised program. Worms are self-replicating malware that spread between programs, apps and devices without the need for human interaction.<ref name="Malware-IBM" />
  • Trojan horses are programs that pretend to be helpful or hide themselves within desired or legitimate software to "trick users into installing them." Once installed, a RAT (Remote Access Trojan) can create a secret backdoor on the affected device to cause damage.<ref name="Malware-IBM" />
  • Spyware is a type of malware that secretly gathers information from an infected computer and transmits the sensitive information back to the attacker. One of the most common forms of spyware are keyloggers, which record all of a user's keyboard inputs/keystrokes, to "allow hackers to harvest usernames, passwords, bank account and credit card numbers."<ref name="Malware-IBM" />
  • Scareware, as the name suggests, is a form of malware which uses social engineering (manipulation) to scare, shock, trigger anxiety, or suggest the perception of a threat in order to manipulate users into buying or installing unwanted software. These attacks often begin with a "sudden pop-up with an urgent message, usually warning the user that they've broken the law or their device has a virus."<ref name="Malware-IBM" />
  • Ransomware is when malware installs itself onto a victim's machine, encrypts their files, and then turns around and demands a ransom (usually in Bitcoin) to return that data to the user.

Man-in-the-middle attacks

[edit]

Man-in-the-middle attacks (MITM) involve a malicious attacker trying to intercept, surveil or modify communications between two parties by spoofing one or both party's identities and injecting themselves in-between.<ref name="verizon-mitm"/> Types of MITM attacks include:

  • IP address spoofing is where the attacker hijacks routing protocols to reroute the targets traffic to a vulnerable network node for traffic interception or injection.
  • Message spoofing (via email, SMS or OTT messaging) is where the attacker spoofs the identity or carrier service while the target is using messaging protocols like email, SMS or OTT (IP-based) messaging apps. The attacker can then monitor conversations, launch social attacks or trigger zero-day-vulnerabilities to allow for further attacks.
  • WiFi SSID spoofing is where the attacker simulates a WIFI base station SSID to capture and modify internet traffic and transactions. The attacker can also use local network addressing and reduced network defenses to penetrate the target's firewall by breaching known vulnerabilities. Sometimes known as a Pineapple attack thanks to a popular device. See also Malicious association.
  • DNS spoofing is where attackers hijack domain name assignments to redirect traffic to systems under the attackers control, in order to surveil traffic or launch other attacks.
  • SSL hijacking, typically coupled with another media-level MITM attack, is where the attacker spoofs the SSL authentication and encryption protocol by way of Certificate Authority injection in order to decrypt, surveil and modify traffic. See also TLS interception<ref name="verizon-mitm">

Template:Cite web </ref>

Multi-vector, polymorphic attacks

[edit]

Surfacing in 2017, a new class of multi-vector,<ref>Template:Cite web</ref> polymorphic<ref>Template:Cite news</ref> cyber threats combine several types of attacks and change form to avoid cybersecurity controls as they spread.

Multi-vector polymorphic attacks, as the name describes, are both multi-vectored and polymorphic.<ref name="Tounsi-2019">Template:Citation</ref> Firstly, they are a singular attack that involves multiple methods of attack. In this sense, they are "multi-vectored (i.e. the attack can use multiple means of propagation such as via the Web, email and applications." However, they are also multi-staged, meaning that "they can infiltrate networks and move laterally inside the network."<ref name="Tounsi-2019" /> The attacks can be polymorphic, meaning that the cyberattacks used such as viruses, worms or trojans "constantly change ("morph") making it nearly impossible to detect them using signature-based defences."<ref name="Tounsi-2019" />

Phishing

[edit]
File:PhishingTrustedBank.png
An example of a phishing email, disguised as an official email from a (fictional) bank. The sender is attempting to trick the recipient into revealing confidential information by confirming it at the phisher's website. Note the misspelling of the words received and discrepancy as Template:Typo and Template:Typo, respectively. Although the URL of the bank's webpage appears to be legitimate, the hyperlink points at the phisher's webpage.

Phishing is the attempt of acquiring sensitive information such as usernames, passwords, and credit card details directly from users by deceiving the users.<ref>Template:Cite web</ref> Phishing is typically carried out by email spoofing, instant messaging, text message, or on a phone call. They often direct users to enter details at a fake website whose look and feel are almost identical to the legitimate one.<ref>Template:Cite web</ref> The fake website often asks for personal information, such as login details and passwords. This information can then be used to gain access to the individual's real account on the real website.

Preying on a victim's trust, phishing can be classified as a form of social engineering. Attackers can use creative ways to gain access to real accounts. A common scam is for attackers to send fake electronic invoices<ref>Template:Cite web</ref> to individuals showing that they recently purchased music, apps, or others, and instructing them to click on a link if the purchases were not authorized. A more strategic type of phishing is spear-phishing which leverages personal or organization-specific details to make the attacker appear like a trusted source. Spear-phishing attacks target specific individuals, rather than the broad net cast by phishing attempts.<ref name=":3">Template:Cite web</ref>

Privilege escalation

[edit]

Privilege escalation describes a situation where an attacker with some level of restricted access is able to, without authorization, elevate their privileges or access level.<ref name="Privilege escalation">Template:Cite web</ref> For example, a standard computer user may be able to exploit a vulnerability in the system to gain access to restricted data; or even become root and have full unrestricted access to a system. The severity of attacks can range from attacks simply sending an unsolicited email to a ransomware attack on large amounts of data. Privilege escalation usually starts with social engineering techniques, often phishing.<ref name="Privilege escalation" />

Privilege escalation can be separated into two strategies, horizontal and vertical privilege escalation:

  • Horizontal escalation (or account takeover) is where an attacker gains access to a normal user account that has relatively low-level privileges. This may be through stealing the user's username and password. Once they have access, they have gained a foothold, and using this foothold the attacker then may move around the network of users at this same lower level, gaining access to information of this similar privilege.<ref name="Privilege escalation" />
  • Vertical escalation however targets people higher up in a company and often with more administrative power, such as an employee in IT with a higher privilege. Using this privileged account will then enable the attacker to invade other accounts.<ref name="Privilege escalation" />

Side-channel attack

[edit]

Template:Main

Any computational system affects its environment in some form. This effect it has on its environment can range from electromagnetic radiation, to residual effect on RAM cells which as a consequence make a Cold boot attack possible, to hardware implementation faults that allow for access or guessing of other values that normally should be inaccessible. In Side-channel attack scenarios, the attacker would gather such information about a system or network to guess its internal state and as a result access the information which is assumed by the victim to be secure. The target information in a side channel can be challenging to detect due to its low amplitude when combined with other signals <ref>Template:Cite journal</ref>

Social engineering

[edit]

Social engineering, in the context of computer security, aims to convince a user to disclose secrets such as passwords, card numbers, etc. or grant physical access by, for example, impersonating a senior executive, bank, a contractor, or a customer.<ref>Template:Cite web</ref> This generally involves exploiting people's trust, and relying on their cognitive biases. A common scam involves emails sent to accounting and finance department personnel, impersonating their CEO and urgently requesting some action. One of the main techniques of social engineering are phishing attacks.

In early 2016, the FBI reported that such business email compromise (BEC) scams had cost US businesses more than $2 billion in about two years.<ref>Template:Cite news</ref>

In May 2016, the Milwaukee Bucks NBA team was the victim of this type of cyber scam with a perpetrator impersonating the team's president Peter Feigin, resulting in the handover of all the team's employees' 2015 W-2 tax forms.<ref>Template:Cite news</ref>

Spoofing

[edit]

Template:Main

Spoofing is an act of pretending to be a valid entity through the falsification of data (such as an IP address or username), in order to gain access to information or resources that one is otherwise unauthorized to obtain. Spoofing is closely related to phishing.<ref>Template:Cite web</ref><ref>Template:Cite encyclopedia</ref> There are several types of spoofing, including:

In 2018, the cybersecurity firm Trellix published research on the life-threatening risk of spoofing in the healthcare industry.<ref>Template:Cite web</ref>

Tampering

[edit]

Tampering describes a malicious modification or alteration of data. It is an intentional but unauthorized act resulting in the modification of a system, components of systems, its intended behavior, or data. So-called Evil Maid attacks and security services planting of surveillance capability into routers are examples.<ref>Template:Cite web</ref>

HTML smuggling

[edit]

HTML smuggling allows an attacker to smuggle a malicious code inside a particular HTML or web page.<ref name="Intelligence-2021">Template:Cite web</ref> HTML files can carry payloads concealed as benign, inert data in order to defeat content filters. These payloads can be reconstructed on the other side of the filter.<ref>Template:Cite web</ref>

When a target user opens the HTML, the malicious code is activated; the web browser then decodes the script, which then unleashes the malware onto the target's device.<ref name="Intelligence-2021" />

Information security practices

[edit]

Employee behavior can have a big impact on information security in organizations. Cultural concepts can help different segments of the organization work effectively or work against effectiveness toward information security within an organization. Information security culture is the "...totality of patterns of behavior in an organization that contributes to the protection of information of all kinds."<ref>Template:Cite conference</ref>

Andersson and Reimers (2014) found that employees often do not see themselves as part of their organization's information security effort and often take actions that impede organizational changes.<ref>Template:Cite conference</ref> Indeed, the Verizon Data Breach Investigations Report 2020, which examined 3,950 security breaches, discovered 30% of cybersecurity incidents involved internal actors within a company.<ref>Template:Cite report</ref> Research shows information security culture needs to be improved continuously. In "Information Security Culture from Analysis to Change", authors commented, "It's a never-ending process, a cycle of evaluation and change or maintenance." To manage the information security culture, five steps should be taken: pre-evaluation, strategic planning, operative planning, implementation, and post-evaluation.<ref name="Schlienger, Thomas 2003">Template:Cite journal</ref>

  • Pre-evaluation: To identify the awareness of information security within employees and to analyze the current security policies.
  • Strategic planning: To come up with a better awareness program, clear targets need to be set. Assembling a team of skilled professionals is helpful to achieve it.
  • Operative planning: A good security culture can be established based on internal communication, management buy-in, security awareness and a training program.<ref name="Schlienger, Thomas 2003" />
  • Implementation: Four stages should be used to implement the information security culture. They are:
  1. Commitment of the management
  2. Communication with organizational members
  3. Courses for all organizational members
  4. Commitment of the employees<ref name="Schlienger, Thomas 2003" />
  • Post-evaluation: To assess the success of the planning and implementation, and to identify unresolved areas of concern.

Computer protection (countermeasures)

[edit]

In computer security, a countermeasure is an action, device, procedure or technique that reduces a threat, a vulnerability, or an attack by eliminating or preventing it, by minimizing the harm it can cause, or by discovering and reporting it so that corrective action can be taken.<ref>Template:Cite ietf</ref><ref>Template:Cite web</ref><ref>Template:Cite web</ref>

Some common countermeasures are listed in the following sections:

Security by design

[edit]

Template:Main

Security by design, or alternately secure by design, means that the software has been designed from the ground up to be secure. In this case, security is considered a main feature.

The UK government's National Cyber Security Centre separates secure cyber design principles into five sections:<ref>Template:Cite web</ref>

  1. Before a secure system is created or updated, companies should ensure they understand the fundamentals and the context around the system they are trying to create and identify any weaknesses in the system.
  2. Companies should design and centre their security around techniques and defences which make attacking their data or systems inherently more challenging for attackers.
  3. Companies should ensure that their core services that rely on technology are protected so that the systems are essentially never down.
  4. Although systems can be created which are safe against a multitude of attacks, that does not mean that attacks will not be attempted. Despite one's security, all companies' systems should aim to be able to detect and spot attacks as soon as they occur to ensure the most effective response to them.
  5. Companies should create secure systems designed so that any attack that is successful has minimal severity.

These design principles of security by design can include some of the following techniques:

  • The principle of least privilege, where each part of the system has only the privileges that are needed for its function. That way, even if an attacker gains access to that part, they only have limited access to the whole system.
  • Automated theorem proving to prove the correctness of crucial software subsystems.
  • Code reviews and unit testing, approaches to make modules more secure where formal correctness proofs are not possible.
  • Defense in depth, where the design is such that more than one subsystem needs to be violated to compromise the integrity of the system and the information it holds.
  • Default secure settings, and design to fail secure rather than fail insecure (see fail-safe for the equivalent in safety engineering). Ideally, a secure system should require a deliberate, conscious, knowledgeable and free decision on the part of legitimate authorities in order to make it insecure.
  • Audit trails track system activity so that when a security breach occurs, the mechanism and extent of the breach can be determined. Storing audit trails remotely, where they can only be appended to, can keep intruders from covering their tracks.
  • Full disclosure of all vulnerabilities, to ensure that the window of vulnerability is kept as short as possible when bugs are discovered.

Security architecture

[edit]

Security architecture can be defined as the "practice of designing computer systems to achieve security goals."<ref name="NSCS security arch">Template:Cite web</ref> These goals have overlap with the principles of "security by design" explored above, including to "make initial compromise of the system difficult," and to "limit the impact of any compromise."<ref name="NSCS security arch" /> In practice, the role of a security architect would be to ensure the structure of a system reinforces the security of the system, and that new changes are safe and meet the security requirements of the organization.<ref>Template:Cite web</ref><ref>Template:Cite web</ref>

Similarly, Techopedia defines security architecture as "a unified security design that addresses the necessities and potential risks involved in a certain scenario or environment. It also specifies when and where to apply security controls. The design process is generally reproducible." The key attributes of security architecture are:<ref>Template:Cite web</ref>

  • the relationship of different components and how they depend on each other.
  • determination of controls based on risk assessment, good practices, finances, and legal matters.
  • the standardization of controls.

Practicing security architecture provides the right foundation to systematically address business, IT and security concerns in an organization.

Security measures

[edit]

A state of computer security is the conceptual ideal, attained by the use of three processes: threat prevention, detection, and response. These processes are based on various policies and system components, which include the following:

  • Limiting the access of individuals using user account access controls and using cryptography can protect systems files and data, respectively.
  • Firewalls are by far the most common prevention systems from a network security perspective as they can (if properly configured) shield access to internal network services and block certain kinds of attacks through packet filtering. Firewalls can be both hardware and software-based. Firewalls monitor and control incoming and outgoing traffic of a computer network and establish a barrier between a trusted network and an untrusted network.<ref name="Oppliger-1997">Template:Cite journal</ref>
  • Intrusion Detection System (IDS) products are designed to detect network attacks in-progress and assist in post-attack forensics, while audit trails and logs serve a similar function for individual systems.
  • Response is necessarily defined by the assessed security requirements of an individual system and may cover the range from simple upgrade of protections to notification of legal authorities, counter-attacks, and the like. In some special cases, the complete destruction of the compromised system is favored, as it may happen that not all the compromised resources are detected.
  • Cyber security awareness training to cope with cyber threats and attacks.<ref>Template:Cite web</ref>
  • Forward web proxy solutions can prevent the client to visit malicious web pages and inspect the content before downloading to the client machines.

Today, computer security consists mainly of preventive measures, like firewalls or an exit procedure. A firewall can be defined as a way of filtering network data between a host or a network and another network, such as the Internet. They can be implemented as software running on the machine, hooking into the network stack (or, in the case of most UNIX-based operating systems such as Linux, built into the operating system kernel) to provide real-time filtering and blocking.<ref name="Oppliger-1997" /> Another implementation is a so-called physical firewall, which consists of a separate machine filtering network traffic. Firewalls are common amongst machines that are permanently connected to the Internet.

Some organizations are turning to big data platforms, such as Apache Hadoop, to extend data accessibility and machine learning to detect advanced persistent threats.<ref>Template:Cite news</ref>

In order to ensure adequate security, the confidentiality, integrity and availability of a network, better known as the CIA triad, must be protected and is considered the foundation to information security.<ref>Template:Cite web</ref> To achieve those objectives, administrative, physical and technical security measures should be employed. The amount of security afforded to an asset can only be determined when its value is known.<ref>Template:Cite web</ref>

Vulnerability management

[edit]

Template:Main

Vulnerability management is the cycle of identifying, fixing or mitigating vulnerabilities,<ref>Template:Cite book</ref> especially in software and firmware. Vulnerability management is integral to computer security and network security.

Vulnerabilities can be discovered with a vulnerability scanner, which analyzes a computer system in search of known vulnerabilities,<ref>Template:Cite book</ref> such as open ports, insecure software configuration, and susceptibility to malware. In order for these tools to be effective, they must be kept up to date with every new update the vendor release. Typically, these updates will scan for the new vulnerabilities that were introduced recently.

Beyond vulnerability scanning, many organizations contract outside security auditors to run regular penetration tests against their systems to identify vulnerabilities. In some sectors, this is a contractual requirement.<ref>Template:Cite book</ref>

Reducing vulnerabilities

[edit]

The act of assessing and reducing vulnerabilities to cyber attacks is commonly referred to as information technology security assessments. They aim to assess systems for risk and to predict and test for their vulnerabilities. While formal verification of the correctness of computer systems is possible,<ref>Template:Cite conference</ref><ref>Template:Cite conference</ref> it is not yet common. Operating systems formally verified include seL4,<ref>Template:Cite web</ref> and SYSGO's PikeOS<ref>Template:Cite conference</ref><ref>Template:Cite web</ref> – but these make up a very small percentage of the market.

It is possible to reduce an attacker's chances by keeping systems up to date with security patches and updates and by hiring people with expertise in security. Large companies with significant threats can hire Security Operations Centre (SOC) Analysts. These are specialists in cyber defences, with their role ranging from "conducting threat analysis to investigating reports of any new issues and preparing and testing disaster recovery plans."<ref>Template:Cite web</ref>

Whilst no measures can completely guarantee the prevention of an attack, these measures can help mitigate the damage of possible attacks. The effects of data loss/damage can be also reduced by careful backing up and insurance.

Outside of formal assessments, there are various methods of reducing vulnerabilities. Two factor authentication is a method for mitigating unauthorized access to a system or sensitive information.<ref>Template:Cite web</ref> It requires something you know: a password or PIN, and something you have: a card, dongle, cellphone, or another piece of hardware. This increases security as an unauthorized person needs both of these to gain access.

Protecting against social engineering and direct computer access (physical) attacks can only happen by non-computer means, which can be difficult to enforce, relative to the sensitivity of the information. Training is often involved to help mitigate this risk by improving people's knowledge of how to protect themselves and by increasing people's awareness of threats.<ref>Template:Cite web</ref> However, even in highly disciplined environments (e.g. military organizations), social engineering attacks can still be difficult to foresee and prevent.

Inoculation, derived from inoculation theory, seeks to prevent social engineering and other fraudulent tricks and traps by instilling a resistance to persuasion attempts through exposure to similar or related attempts.<ref>Template:Cite conference</ref>

Hardware protection mechanisms

[edit]

Template:See also

Hardware-based or assisted computer security also offers an alternative to software-only computer security. Using devices and methods such as dongles, trusted platform modules, intrusion-aware cases, drive locks, disabling USB ports, and mobile-enabled access may be considered more secure due to the physical access (or sophisticated backdoor access) required in order to be compromised. Each of these is covered in more detail below.

  • USB dongles are typically used in software licensing schemes to unlock software capabilities,<ref>Template:Cite web</ref> but they can also be seen as a way to prevent unauthorized access to a computer or other device's software. The dongle, or key, essentially creates a secure encrypted tunnel between the software application and the key. The principle is that an encryption scheme on the dongle, such as Advanced Encryption Standard (AES) provides a stronger measure of security since it is harder to hack and replicate the dongle than to simply copy the native software to another machine and use it. Another security application for dongles is to use them for accessing web-based content such as cloud software or Virtual Private Networks (VPNs).<ref>Template:Cite web</ref> In addition, a USB dongle can be configured to lock or unlock a computer.<ref>Template:Cite web</ref>
  • Trusted platform modules (TPMs) secure devices by integrating cryptographic capabilities onto access devices, through the use of microprocessors, or so-called computers-on-a-chip. TPMs used in conjunction with server-side software offer a way to detect and authenticate hardware devices, preventing unauthorized network and data access.<ref>Template:Cite web</ref>
  • Computer case intrusion detection refers to a device, typically a push-button switch, which detects when a computer case is opened. The firmware or BIOS is programmed to show an alert to the operator when the computer is booted up the next time.
  • Drive locks are essentially software tools to encrypt hard drives, making them inaccessible to thieves.<ref>Template:Cite web</ref> Tools exist specifically for encrypting external drives as well.<ref>Template:Cite web</ref>
  • Disabling USB ports is a security option for preventing unauthorized and malicious access to an otherwise secure computer. Infected USB dongles connected to a network from a computer inside the firewall are considered by the magazine Network World as the most common hardware threat facing computer networks.
  • Disconnecting or disabling peripheral devices (like camera, GPS, removable storage, etc.), that are not in use.<ref>Template:Cite journal</ref>
  • Mobile-enabled access devices are growing in popularity due to the ubiquitous nature of cell phones.<ref>Template:Cite web</ref> Built-in capabilities such as Bluetooth, the newer Bluetooth low energy (LE), near-field communication (NFC) on non-iOS devices and biometric validation such as thumbprint readers, as well as QR code reader software designed for mobile devices, offer new, secure ways for mobile phones to connect to access control systems. These control systems provide computer security and can also be used for controlling access to secure buildings.<ref>Template:Cite web</ref>
  • IOMMUs allow for hardware-based sandboxing of components in mobile and desktop computers by utilizing direct memory access protections.<ref>Template:Cite web</ref><ref>Template:Cite web</ref>
  • Physical Unclonable Functions (PUFs) can be used as a digital fingerprint or a unique identifier to integrated circuits and hardware, providing users the ability to secure the hardware supply chains going into their systems.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

Secure operating systems

[edit]

Template:Main

One use of the term computer security refers to technology that is used to implement secure operating systems. Using secure operating systems is a good way of ensuring computer security. These are systems that have achieved certification from an external security-auditing organization, the most popular evaluations are Common Criteria (CC).<ref>Template:Cite web</ref>

Secure coding

[edit]

Template:Main

In software engineering, secure coding aims to guard against the accidental introduction of security vulnerabilities. It is also possible to create software designed from the ground up to be secure. Such systems are secure by design. Beyond this, formal verification aims to prove the correctness of the algorithms underlying a system;<ref>Template:Cite journal</ref> important for cryptographic protocols for example.

Capabilities and access control lists

[edit]

Template:Main

Within computer systems, two of the main security models capable of enforcing privilege separation are access control lists (ACLs) and role-based access control (RBAC).

An access-control list (ACL), with respect to a computer file system, is a list of permissions associated with an object. An ACL specifies which users or system processes are granted access to objects, as well as what operations are allowed on given objects.

Role-based access control is an approach to restricting system access to authorized users,<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite conference</ref> used by the majority of enterprises with more than 500 employees,<ref name="autogenerated2002">Template:Cite book</ref> and can implement mandatory access control (MAC) or discretionary access control (DAC).

A further approach, capability-based security has been mostly restricted to research operating systems. Capabilities can, however, also be implemented at the language level, leading to a style of programming that is essentially a refinement of standard object-oriented design. An open-source project in the area is the E language.

User security training

[edit]

The end-user is widely recognized as the weakest link in the security chain<ref>Template:Cite web</ref> and it is estimated that more than 90% of security incidents and breaches involve some kind of human error.<ref>Template:Cite web</ref><ref>Template:Cite web</ref> Among the most commonly recorded forms of errors and misjudgment are poor password management, sending emails containing sensitive data and attachments to the wrong recipient, the inability to recognize misleading URLs and to identify fake websites and dangerous email attachments. A common mistake that users make is saving their user id/password in their browsers to make it easier to log in to banking sites. This is a gift to attackers who have obtained access to a machine by some means. The risk may be mitigated by the use of two-factor authentication.<ref>Template:Cite web</ref>

As the human component of cyber risk is particularly relevant in determining the global cyber risk<ref>Template:Cite web</ref> an organization is facing, security awareness training, at all levels, not only provides formal compliance with regulatory and industry mandates but is considered essential<ref>Template:Cite news</ref> in reducing cyber risk and protecting individuals and companies from the great majority of cyber threats.

The focus on the end-user represents a profound cultural change for many security practitioners, who have traditionally approached cybersecurity exclusively from a technical perspective, and moves along the lines suggested by major security centers<ref>Template:Cite web</ref> to develop a culture of cyber awareness within the organization, recognizing that a security-aware user provides an important line of defense against cyber attacks.

Digital hygiene

[edit]

Related to end-user training, digital hygiene or cyber hygiene is a fundamental principle relating to information security and, as the analogy with personal hygiene shows, is the equivalent of establishing simple routine measures to minimize the risks from cyber threats. The assumption is that good cyber hygiene practices can give networked users another layer of protection, reducing the risk that one vulnerable node will be used to either mount attacks or compromise another node or network, especially from common cyberattacks.<ref name="Cyber Hygiene">Template:Cite web</ref> Cyber hygiene should also not be mistaken for proactive cyber defence, a military term.<ref name="Kaljulaid-2017">Template:Cite web</ref>

The most common acts of digital hygiene can include updating malware protection, cloud back-ups, passwords, and ensuring restricted admin rights and network firewalls.<ref>Template:Cite web</ref> As opposed to a purely technology-based defense against threats, cyber hygiene mostly regards routine measures that are technically simple to implement and mostly dependent on discipline<ref>Template:Cite news</ref> or education.<ref>Template:Cite news</ref> It can be thought of as an abstract list of tips or measures that have been demonstrated as having a positive effect on personal or collective digital security. As such, these measures can be performed by laypeople, not just security experts.

Cyber hygiene relates to personal hygiene as computer viruses relate to biological viruses (or pathogens). However, while the term computer virus was coined almost simultaneously with the creation of the first working computer viruses,<ref>Template:Cite news</ref> the term cyber hygiene is a much later invention, perhaps as late as 2000<ref>Template:Cite web</ref> by Internet pioneer Vint Cerf. It has since been adopted by the Congress<ref>Template:USBill</ref> and Senate of the United States,<ref>Template:Cite news</ref> the FBI,<ref>Template:Cite web</ref> EU institutions<ref name="Cyber Hygiene" /> and heads of state.<ref name="Kaljulaid-2017" />

Difficulty of responding to breaches

[edit]

Responding to attempted security breaches is often very difficult for a variety of reasons, including:

  • Identifying attackers is difficult, as they may operate through proxies, temporary anonymous dial-up accounts, wireless connections, and other anonymizing procedures which make back-tracing difficult – and are often located in another jurisdiction. If they successfully breach security, they have also often gained enough administrative access to enable them to delete logs to cover their tracks.
  • The sheer number of attempted attacks, often by automated vulnerability scanners and computer worms, is so large that organizations cannot spend time pursuing each.
  • Law enforcement officers often lack the skills, interest or budget to pursue attackers. Furthermore, identifying attackers across a network may necessitate collecting logs from multiple locations within the network and across various countries, a process that can be both difficult and time-consuming.

Where an attack succeeds and a breach occurs, many jurisdictions now have in place mandatory security breach notification laws.

Types of security and privacy

[edit]

Template:Div col

Template:Div col end

Systems at risk

[edit]

The growth in the number of computer systems and the increasing reliance upon them by individuals, businesses, industries, and governments means that there are an increasing number of systems at risk.

Financial systems

[edit]

The computer systems of financial regulators and financial institutions like the U.S. Securities and Exchange Commission, SWIFT, investment banks, and commercial banks are prominent hacking targets for cybercriminals interested in manipulating markets and making illicit gains.<ref>Template:Cite journal</ref> Websites and apps that accept or store credit card numbers, brokerage accounts, and bank account information are also prominent hacking targets, because of the potential for immediate financial gain from transferring money, making purchases, or selling the information on the black market.<ref>Template:Cite journal</ref> In-store payment systems and ATMs have also been tampered with in order to gather customer account data and PINs.

The UCLA Internet Report: Surveying the Digital Future (2000) found that the privacy of personal data created barriers to online sales and that more than nine out of 10 internet users were somewhat or very concerned about credit card security.<ref>Template:Cite report</ref>

The most common web technologies for improving security between browsers and websites are named SSL (Secure Sockets Layer), and its successor TLS (Transport Layer Security), identity management and authentication services, and domain name services allow companies and consumers to engage in secure communications and commerce. Several versions of SSL and TLS are commonly used today in applications such as web browsing, e-mail, internet faxing, instant messaging, and VoIP (voice-over-IP). There are various interoperable implementations of these technologies, including at least one implementation that is open source. Open source allows anyone to view the application's source code, and look for and report vulnerabilities.

The credit card companies Visa and MasterCard cooperated to develop the secure EMV chip which is embedded in credit cards. Further developments include the Chip Authentication Program where banks give customers hand-held card readers to perform online secure transactions. Other developments in this arena include the development of technology such as Instant Issuance which has enabled shopping mall kiosks acting on behalf of banks to issue on-the-spot credit cards to interested customers.

Utilities and industrial equipment

[edit]

Computers control functions at many utilities, including coordination of telecommunications, the power grid, nuclear power plants, and valve opening and closing in water and gas networks. The Internet is a potential attack vector for such machines if connected, but the Stuxnet worm demonstrated that even equipment controlled by computers not connected to the Internet can be vulnerable. In 2014, the Computer Emergency Readiness Team, a division of the Department of Homeland Security, investigated 79 hacking incidents at energy companies.<ref>Template:Cite web</ref>

Aviation

[edit]

The aviation industry is very reliant on a series of complex systems which could be attacked.<ref>Template:Cite conference</ref> A simple power outage at one airport can cause repercussions worldwide,<ref>Template:Cite report</ref> much of the system relies on radio transmissions which could be disrupted,<ref>Template:Cite web</ref> and controlling aircraft over oceans is especially dangerous because radar surveillance only extends 175 to 225 miles offshore.<ref>Template:Cite web</ref> There is also potential for attack from within an aircraft.<ref>Template:Cite news</ref>

Implementing fixes in aerospace systems poses a unique challenge because efficient air transportation is heavily affected by weight and volume. Improving security by adding physical devices to airplanes could increase their unloaded weight, and could potentially reduce cargo or passenger capacity.<ref>Template:Cite magazine</ref>

In Europe, with the (Pan-European Network Service)<ref>Template:Cite web</ref> and NewPENS,<ref>Template:Cite web</ref> and in the US with the NextGen program,<ref>Template:Cite web</ref> air navigation service providers are moving to create their own dedicated networks.

Many modern passports are now biometric passports, containing an embedded microchip that stores a digitized photograph and personal information such as name, gender, and date of birth. In addition, more countriesTemplate:Which are introducing facial recognition technology to reduce identity-related fraud. The introduction of the ePassport has assisted border officials in verifying the identity of the passport holder, thus allowing for quick passenger processing.<ref>Template:Cite web</ref> Plans are under way in the US, the UK, and Australia to introduce SmartGate kiosks with both retina and fingerprint recognition technology.<ref>Template:Cite web</ref> The airline industry is moving from the use of traditional paper tickets towards the use of electronic tickets (e-tickets). These have been made possible by advances in online credit card transactions in partnership with the airlines. Long-distance bus companiesTemplate:Which are also switching over to e-ticketing transactions today.

The consequences of a successful attack range from loss of confidentiality to loss of system integrity, air traffic control outages, loss of aircraft, and even loss of life.

Consumer devices

[edit]

Desktop computers and laptops are commonly targeted to gather passwords or financial account information or to construct a botnet to attack another target. Smartphones, tablet computers, smart watches, and other mobile devices such as quantified self devices like activity trackers have sensors such as cameras, microphones, GPS receivers, compasses, and accelerometers which could be exploited, and may collect personal information, including sensitive health information. WiFi, Bluetooth, and cell phone networks on any of these devices could be used as attack vectors, and sensors might be remotely activated after a successful breach.<ref name="nestwatch">Template:Cite web</ref>

The increasing number of home automation devices such as the Nest thermostat are also potential targets.<ref name="nestwatch" />

Healthcare

[edit]

Today many healthcare providers and health insurance companies use the internet to provide enhanced products and services. Examples are the use of tele-health to potentially offer better quality and access to healthcare, or fitness trackers to lower insurance premiums.Template:Citation needed Patient records are increasingly being placed on secure in-house networks, alleviating the need for extra storage space.<ref>Template:Cite journal</ref>

Large corporations

[edit]

Large corporations are common targets. In many cases attacks are aimed at financial gain through identity theft and involve data breaches. Examples include the loss of millions of clients' credit card and financial details by Home Depot,<ref>Template:Cite news</ref> Staples,<ref>Template:Cite magazine</ref> Target Corporation,<ref>Template:Cite news</ref> and Equifax.<ref>Template:Cite news</ref>

Medical records have been targeted in general identify theft, health insurance fraud, and impersonating patients to obtain prescription drugs for recreational purposes or resale.<ref>Template:Cite news</ref> Although cyber threats continue to increase, 62% of all organizations did not increase security training for their business in 2015.<ref>Template:Cite news</ref>

Not all attacks are financially motivated, however: security firm HBGary Federal had a serious series of attacks in 2011 from hacktivist group Anonymous in retaliation for the firm's CEO claiming to have infiltrated their group,<ref>Template:Cite web</ref><ref>Template:Cite web</ref> and Sony Pictures was hacked in 2014 with the apparent dual motive of embarrassing the company through data leaks and crippling the company by wiping workstations and servers.<ref>Template:Cite web</ref><ref>Template:Cite news</ref>

Automobiles

[edit]

Template:See also Vehicles are increasingly computerized, with engine timing, cruise control, anti-lock brakes, seat belt tensioners, door locks, airbags and advanced driver-assistance systems on many models. Additionally, connected cars may use WiFi and Bluetooth to communicate with onboard consumer devices and the cell phone network.<ref name="vox" /> Self-driving cars are expected to be even more complex. All of these systems carry some security risks, and such issues have gained wide attention.<ref>Template:Cite report</ref><ref>Template:Cite web</ref><ref>Template:Cite news</ref>

Simple examples of risk include a malicious compact disc being used as an attack vector,<ref>Template:Cite conference</ref> and the car's onboard microphones being used for eavesdropping. However, if access is gained to a car's internal controller area network, the danger is much greater<ref name="vox">Template:Cite web</ref> – and in a widely publicized 2015 test, hackers remotely carjacked a vehicle from 10 miles away and drove it into a ditch.<ref>Template:Cite magazine</ref><ref>Template:Cite news</ref>

Manufacturers are reacting in numerous ways, with Tesla in 2016 pushing out some security fixes over the air into its cars' computer systems.<ref>Template:Cite news</ref> In the area of autonomous vehicles, in September 2016 the United States Department of Transportation announced some initial safety standards, and called for states to come up with uniform policies.<ref>Template:Cite news</ref><ref>Template:Cite web</ref><ref>Template:Cite web</ref>

Additionally, e-Drivers' licenses are being developed using the same technology. For example, Mexico's licensing authority (ICV) has used a smart card platform to issue the first e-Drivers' licenses to the city of Monterrey, in the state of Nuevo León.<ref>Template:Cite web</ref>

Shipping

[edit]

Shipping companies<ref>Template:Cite web</ref> have adopted RFID (Radio Frequency Identification) technology as an efficient, digitally secure, tracking device. Unlike a barcode, RFID can be read up to 20 feet away. RFID is used by FedEx<ref>Template:Cite web</ref> and UPS.<ref>Template:Cite conference</ref>

Government

[edit]

Government and military computer systems are commonly attacked by activists<ref>Template:Cite news</ref><ref>Template:Cite news</ref><ref>Template:Cite court</ref> and foreign powers.<ref>Template:Cite news</ref><ref>Template:Cite web</ref><ref>Template:Cite news</ref><ref>Template:Cite news</ref> Local and regional government infrastructure such as traffic light controls, police and intelligence agency communications, personnel records, as well as student records.<ref>Template:Cite journal</ref>

The FBI, CIA, and Pentagon, all utilize secure controlled access technology for any of their buildings. However, the use of this form of technology is spreading into the entrepreneurial world. More and more companies are taking advantage of the development of digitally secure controlled access technology. GE's ACUVision, for example, offers a single panel platform for access control, alarm monitoring and digital recording.<ref>Template:Cite web</ref>

Internet of things and physical vulnerabilities

[edit]

The Internet of things (IoT) is the network of physical objects such as devices, vehicles, and buildings that are embedded with electronics, software, sensors, and network connectivity that enables them to collect and exchange data.<ref>Template:Cite web</ref> Concerns have been raised that this is being developed without appropriate consideration of the security challenges involved.<ref>Template:Cite journal</ref><ref>Template:Cite news</ref>

While the IoT creates opportunities for more direct integration of the physical world into computer-based systems,<ref>Template:Cite web</ref><ref>Template:Cite web</ref> it also provides opportunities for misuse. In particular, as the Internet of Things spreads widely, cyberattacks are likely to become an increasingly physical (rather than simply virtual) threat.<ref>Template:Cite journal</ref> If a front door's lock is connected to the Internet, and can be locked/unlocked from a phone, then a criminal could enter the home at the press of a button from a stolen or hacked phone. People could stand to lose much more than their credit card numbers in a world controlled by IoT-enabled devices. Thieves have also used electronic means to circumvent non-Internet-connected hotel door locks.<ref>Template:Cite web</ref>

An attack aimed at physical infrastructure or human lives is often called a cyber-kinetic attack. As IoT devices and appliances become more widespread, the prevalence and potential damage of cyber-kinetic attacks can increase substantially.

Medical systems

[edit]

Template:See also Medical devices have either been successfully attacked or had potentially deadly vulnerabilities demonstrated, including both in-hospital diagnostic equipment<ref>Template:Cite web</ref> and implanted devices including pacemakers<ref>Template:Cite web</ref> and insulin pumps.<ref>Template:Cite news</ref> There are many reports of hospitals and hospital organizations getting hacked, including ransomware attacks,<ref>Template:Cite magazine</ref><ref name="wiwo1">Template:Cite web</ref><ref>Template:Cite web</ref><ref>Template:Cite web</ref> Windows XP exploits,<ref>Template:Cite web</ref><ref>Template:Cite web</ref> viruses,<ref>Template:Cite news</ref><ref>Template:Cite news</ref> and data breaches of sensitive data stored on hospital servers.<ref>Template:Cite news</ref><ref name="wiwo1" /><ref>Template:Cite web</ref><ref>Template:Cite web</ref> On 28 December 2016 the US Food and Drug Administration released its recommendations for how medical device manufacturers should maintain the security of Internet-connected devices – but no structure for enforcement.<ref>Template:Cite web</ref><ref>Template:Cite web</ref>

Energy sector

[edit]

In distributed generation systems, the risk of a cyber attack is real, according to Daily Energy Insider. An attack could cause a loss of power in a large area for a long period of time, and such an attack could have just as severe consequences as a natural disaster. The District of Columbia is considering creating a Distributed Energy Resources (DER) Authority within the city, with the goal being for customers to have more insight into their own energy use and giving the local electric utility, Pepco, the chance to better estimate energy demand. The D.C. proposal, however, would "allow third-party vendors to create numerous points of energy distribution, which could potentially create more opportunities for cyber attackers to threaten the electric grid."<ref>Template:Cite news</ref>

Telecommunications

[edit]

Perhaps the most widely known digitally secure telecommunication device is the SIM (Subscriber Identity Module) card, a device that is embedded in most of the world's cellular devices before any service can be obtained. The SIM card is just the beginning of this digitally secure environment.

The Smart Card Web Servers draft standard (SCWS) defines the interfaces to an HTTP server in a smart card.<ref>Template:Cite web</ref> Tests are being conducted to secure OTA ("over-the-air") payment and credit card information from and to a mobile phone. Combination SIM/DVD devices are being developed through Smart Video Card technology which embeds a DVD-compliant optical disc into the card body of a regular SIM card.

Other telecommunication developments involving digital security include mobile signatures, which use the embedded SIM card to generate a legally binding electronic signature.

Cost and impact of security breaches

[edit]

Serious financial damage has been caused by security breaches, but because there is no standard model for estimating the cost of an incident, the only data available is that which is made public by the organizations involved. "Several computer security consulting firms produce estimates of total worldwide losses attributable to virus and worm attacks and to hostile digital acts in general. The 2003 loss estimates by these firms range from $13 billion (worms and viruses only) to $226 billion (for all forms of covert attacks). The reliability of these estimates is often challenged; the underlying methodology is basically anecdotal."<ref>Template:Cite report</ref>

However, reasonable estimates of the financial cost of security breaches can actually help organizations make rational investment decisions. According to the classic Gordon-Loeb Model analyzing the optimal investment level in information security, one can conclude that the amount a firm spends to protect information should generally be only a small fraction of the expected loss (i.e., the expected value of the loss resulting from a cyber/information security breach).<ref>Template:Cite journal</ref>

Attacker motivation

[edit]

As with physical security, the motivations for breaches of computer security vary between attackers. Some are thrill-seekers or vandals, some are activists, others are criminals looking for financial gain. State-sponsored attackers are now common and well resourced but started with amateurs such as Markus Hess who hacked for the KGB, as recounted by Clifford Stoll in The Cuckoo's Egg.

Attackers motivations can vary for all types of attacks from pleasure to political goals.<ref name="DoS guidance" /> For example, hacktivists may target a company or organization that carries out activities they do not agree with. This would be to create bad publicity for the company by having its website crash.

High capability hackers, often with larger backing or state sponsorship, may attack based on the demands of their financial backers. These attacks are more likely to attempt more serious attack. An example of a more serious attack was the 2015 Ukraine power grid hack, which reportedly utilised the spear-phising, destruction of files, and denial-of-service attacks to carry out the full attack.<ref>Template:Cite news</ref><ref>Template:Cite web</ref>

Additionally, recent attacker motivations can be traced back to extremist organizations seeking to gain political advantage or disrupt social agendas.<ref>Template:Cite journal</ref> The growth of the internet, mobile technologies, and inexpensive computing devices have led to a rise in capabilities but also to the risk to environments that are deemed as vital to operations. All critical targeted environments are susceptible to compromise and this has led to a series of proactive studies on how to migrate the risk by taking into consideration motivations by these types of actors. Several stark differences exist between the hacker motivation and that of nation state actors seeking to attack based on an ideological preference.<ref>Template:Cite journal</ref>

A key aspect of threat modeling for any system is identifying the motivations behind potential attacks and the individuals or groups likely to carry them out. The level and detail of security measures will differ based on the specific system being protected. For instance, a home personal computer, a bank, and a classified military network each face distinct threats, despite using similar underlying technologies.<ref>Template:Cite book</ref>

Computer security incident management

[edit]

Computer security incident management is an organized approach to addressing and managing the aftermath of a computer security incident or compromise with the goal of preventing a breach or thwarting a cyberattack. An incident that is not identified and managed at the time of intrusion typically escalates to a more damaging event such as a data breach or system failure. The intended outcome of a computer security incident response plan is to contain the incident, limit damage and assist recovery to business as usual. Responding to compromises quickly can mitigate exploited vulnerabilities, restore services and processes and minimize losses.<ref>Template:Cite web</ref> Incident response planning allows an organization to establish a series of best practices to stop an intrusion before it causes damage. Typical incident response plans contain a set of written instructions that outline the organization's response to a cyberattack. Without a documented plan in place, an organization may not successfully detect an intrusion or compromise and stakeholders may not understand their roles, processes and procedures during an escalation, slowing the organization's response and resolution.

There are four key components of a computer security incident response plan:

  1. Preparation: Preparing stakeholders on the procedures for handling computer security incidents or compromises
  2. Detection and analysis: Identifying and investigating suspicious activity to confirm a security incident, prioritizing the response based on impact and coordinating notification of the incident
  3. Containment, eradication and recovery: Isolating affected systems to prevent escalation and limit impact, pinpointing the genesis of the incident, removing malware, affected systems and bad actors from the environment and restoring systems and data when a threat no longer remains
  4. Post incident activity: Post mortem analysis of the incident, its root cause and the organization's response with the intent of improving the incident response plan and future response efforts.<ref>Wilcox, S. and Brown, B. (2005) 'Responding to Security Incidents – Sooner or Later Your Systems Will Be Compromised', Journal of Health Care Compliance, 7(2), pp. 41–48</ref>

Notable attacks and breaches

[edit]

Template:Further Some illustrative examples of different types of computer security breaches are given below.

Robert Morris and the first computer worm

[edit]

Template:Main

In 1988, 60,000 computers were connected to the Internet, and most were mainframes, minicomputers and professional workstations. On 2 November 1988, many started to slow down, because they were running a malicious code that demanded processor time and that spread itself to other computers – the first internet computer worm.<ref name="multiple">Jonathan Zittrain, 'The Future of The Internet', Penguin Books, 2008</ref> The software was traced back to 23-year-old Cornell University graduate student Robert Tappan Morris who said "he wanted to count how many machines were connected to the Internet".<ref name="multiple" />

Rome Laboratory

[edit]

In 1994, over a hundred intrusions were made by unidentified crackers into the Rome Laboratory, the US Air Force's main command and research facility. Using trojan horses, hackers were able to obtain unrestricted access to Rome's networking systems and remove traces of their activities. The intruders were able to obtain classified files, such as air tasking order systems data and furthermore able to penetrate connected networks of National Aeronautics and Space Administration's Goddard Space Flight Center, Wright-Patterson Air Force Base, some Defense contractors, and other private sector organizations, by posing as a trusted Rome center user.<ref>Information Security Template:Webarchive. United States Department of Defense, 1986</ref>

TJX customer credit card details

[edit]

In early 2007, American apparel and home goods company TJX announced that it was the victim of an unauthorized computer systems intrusion<ref>Template:Cite press release</ref> and that the hackers had accessed a system that stored data on credit card, debit card, check, and merchandise return transactions.<ref>Largest Customer Info Breach Grows Template:Webarchive. MyFox Twin Cities, 29 March 2007.</ref>

Stuxnet attack

[edit]

In 2010, the computer worm known as Stuxnet reportedly ruined almost one-fifth of Iran's nuclear centrifuges.<ref>Template:Cite web</ref> It did so by disrupting industrial programmable logic controllers (PLCs) in a targeted attack. This is generally believed to have been launched by Israel and the United States to disrupt Iran's nuclear program<ref>Template:Cite news</ref><ref>Template:Cite magazine</ref><ref>Template:Cite web</ref><ref>Template:Cite web</ref> – although neither has publicly admitted this.

Global surveillance disclosures

[edit]

Template:Main

In early 2013, documents provided by Edward Snowden were published by The Washington Post and The Guardian<ref>Template:Cite news</ref><ref>Template:Cite web</ref> exposing the massive scale of NSA global surveillance. There were also indications that the NSA may have inserted a backdoor in a NIST standard for encryption.<ref>Template:Cite journal</ref> This standard was later withdrawn due to widespread criticism.<ref>Template:Cite news</ref> The NSA additionally were revealed to have tapped the links between Google's data centers.<ref>"New Snowden Leak: NSA Tapped Google, Yahoo Data Centers" Template:Webarchive, 31 October 2013, Lorenzo Franceschi-Bicchierai, mashable.com</ref>

Target and Home Depot breaches

[edit]

A Ukrainian hacker known as Rescator broke into Target Corporation computers in 2013, stealing roughly 40 million credit cards,<ref>Template:Cite news</ref> and then Home Depot computers in 2014, stealing between 53 and 56 million credit card numbers.<ref>Template:Cite web</ref> Warnings were delivered at both corporations, but ignored; physical security breaches using self checkout machines are believed to have played a large role. "The malware utilized is absolutely unsophisticated and uninteresting," says Jim Walter, director of threat intelligence operations at security technology company McAfee – meaning that the heists could have easily been stopped by existing antivirus software had administrators responded to the warnings. The size of the thefts has resulted in major attention from state and Federal United States authorities and the investigation is ongoing.

Office of Personnel Management data breach

[edit]

In April 2015, the Office of Personnel Management discovered it had been hacked more than a year earlier in a data breach, resulting in the theft of approximately 21.5 million personnel records handled by the office.<ref>Template:Cite news</ref> The Office of Personnel Management hack has been described by federal officials as among the largest breaches of government data in the history of the United States.<ref>Template:Cite news</ref> Data targeted in the breach included personally identifiable information such as Social Security numbers, names, dates and places of birth, addresses, and fingerprints of current and former government employees as well as anyone who had undergone a government background check.<ref>Template:Cite web</ref><ref>Template:Cite news</ref> It is believed the hack was perpetrated by Chinese hackers.<ref>Template:Cite news</ref>

Ashley Madison breach

[edit]

Template:Main

In July 2015, a hacker group is known as The Impact Team successfully breached the extramarital relationship website Ashley Madison, created by Avid Life Media. The group claimed that they had taken not only company data but user data as well. After the breach, The Impact Team dumped emails from the company's CEO, to prove their point, and threatened to dump customer data unless the website was taken down permanently.<ref>Template:Cite journal</ref> When Avid Life Media did not take the site offline the group released two more compressed files, one 9.7GB and the second 20GB. After the second data dump, Avid Life Media CEO Noel Biderman resigned; but the website remained to function.

Colonial Pipeline ransomware attack

[edit]

Template:Main

In June 2021, the cyber attack took down the largest fuel pipeline in the U.S. and led to shortages across the East Coast.<ref>Template:Cite news</ref>

[edit]

International legal issues of cyber attacks are complicated in nature. There is no global base of common rules to judge, and eventually punish, cybercrimes and cybercriminals - and where security firms or agencies do locate the cybercriminal behind the creation of a particular piece of malware or form of cyber attack, often the local authorities cannot take action due to lack of laws under which to prosecute.<ref name="ted.com">Template:Cite web</ref><ref>Template:Cite web</ref> Proving attribution for cybercrimes and cyberattacks is also a major problem for all law enforcement agencies. "Computer viruses switch from one country to another, from one jurisdiction to another – moving around the world, using the fact that we don't have the capability to globally police operations like this. So the Internet is as if someone [had] given free plane tickets to all the online criminals of the world."<ref name="ted.com" /> The use of techniques such as dynamic DNS, fast flux and bullet proof servers add to the difficulty of investigation and enforcement.

Role of government

[edit]

The role of the government is to make regulations to force companies and organizations to protect their systems, infrastructure and information from any cyberattacks, but also to protect its own national infrastructure such as the national power-grid.<ref>Template:Cite web</ref>

The government's regulatory role in cyberspace is complicated. For some, cyberspace was seen as a virtual space that was to remain free of government intervention, as can be seen in many of today's libertarian blockchain and bitcoin discussions.<ref>Template:Cite news</ref>

Many government officials and experts think that the government should do more and that there is a crucial need for improved regulation, mainly due to the failure of the private sector to solve efficiently the cybersecurity problem. R. Clarke said during a panel discussion at the RSA Security Conference in San Francisco, he believes that the "industry only responds when you threaten regulation. If the industry doesn't respond (to the threat), you have to follow through."<ref>Template:Cite news</ref> On the other hand, executives from the private sector agree that improvements are necessary, but think that government intervention would affect their ability to innovate efficiently. Daniel R. McCarthy analyzed this public-private partnership in cybersecurity and reflected on the role of cybersecurity in the broader constitution of political order.<ref>Template:Cite journal</ref>

On 22 May 2020, the UN Security Council held its second ever informal meeting on cybersecurity to focus on cyber challenges to international peace. According to UN Secretary-General António Guterres, new technologies are too often used to violate rights.<ref>Template:Cite web</ref>

International actions

[edit]

Many different teams and organizations exist, including:

Europe

[edit]

On 14 April 2016, the European Parliament and the Council of the European Union adopted the General Data Protection Regulation (GDPR). The GDPR, which came into force on 25 May 2018, grants individuals within the European Union (EU) and the European Economic Area (EEA) the right to the protection of personal data. The regulation requires that any entity that processes personal data incorporate data protection by design and by default. It also requires that certain organizations appoint a Data Protection Officer (DPO).

The IT Security Association TeleTrusT exist in Germany since June 1986, which is an international competence network for IT security.

National actions

[edit]

Computer emergency response teams

[edit]

Template:Main

Most countries have their own computer emergency response team to protect network security.

Canada

[edit]

Since 2010, Canada has had a cybersecurity strategy.<ref>Template:Cite news</ref><ref name="Canada's Cyber Security Strategy">Template:Cite web</ref> This functions as a counterpart document to the National Strategy and Action Plan for Critical Infrastructure.<ref name="Government of Canada" /> The strategy has three main pillars: securing government systems, securing vital private cyber systems, and helping Canadians to be secure online.<ref name="Canada's Cyber Security Strategy" /><ref name="Government of Canada">Template:Cite web</ref> There is also a Cyber Incident Management Framework to provide a coordinated response in the event of a cyber incident.<ref>Template:Cite web</ref><ref>Template:Cite web</ref>

The Canadian Cyber Incident Response Centre (CCIRC) is responsible for mitigating and responding to threats to Canada's critical infrastructure and cyber systems. It provides support to mitigate cyber threats, technical support to respond & recover from targeted cyber attacks, and provides online tools for members of Canada's critical infrastructure sectors.<ref>Template:Cite web</ref> It posts regular cybersecurity bulletins<ref>Template:Cite web</ref> & operates an online reporting tool where individuals and organizations can report a cyber incident.<ref>Template:Cite web</ref>

To inform the general public on how to protect themselves online, Public Safety Canada has partnered with STOP.THINK.CONNECT, a coalition of non-profit, private sector, and government organizations,<ref>Template:Cite news</ref> and launched the Cyber Security Cooperation Program.<ref>Template:Cite web</ref><ref>Template:Cite web</ref> They also run the GetCyberSafe portal for Canadian citizens, and Cyber Security Awareness Month during October.<ref>Template:Cite web</ref>

Public Safety Canada aims to begin an evaluation of Canada's cybersecurity strategy in early 2015.<ref name="Government of Canada" />

Australia

[edit]

Australian federal government announced an $18.2 million investment to fortify the cybersecurity resilience of small and medium enterprises (SMEs) and enhance their capabilities in responding to cyber threats. This financial backing is an integral component of the soon-to-be-unveiled 2023-2030 Australian Cyber Security Strategy, slated for release within the current week. A substantial allocation of $7.2 million is earmarked for the establishment of a voluntary cyber health check program, facilitating businesses in conducting a comprehensive and tailored self-assessment of their cybersecurity upskill.

This avant-garde health assessment serves as a diagnostic tool, enabling enterprises to ascertain the robustness of Australia's cyber security regulations. Furthermore, it affords them access to a repository of educational resources and materials, fostering the acquisition of skills necessary for an elevated cybersecurity posture. This groundbreaking initiative was jointly disclosed by Minister for Cyber Security Clare O'Neil and Minister for Small Business Julie Collins.<ref>"Australian federal government announces cybersecurity support for SMBs",Template:Cite web</ref>

India

[edit]

Some provisions for cybersecurity have been incorporated into rules framed under the Information Technology Act 2000.<ref>Template:Cite web</ref>

The National Cyber Security Policy 2013 is a policy framework by the Ministry of Electronics and Information Technology (MeitY) which aims to protect the public and private infrastructure from cyberattacks, and safeguard "information, such as personal information (of web users), financial and banking information and sovereign data". CERT- In is the nodal agency which monitors the cyber threats in the country. The post of National Cyber Security Coordinator has also been created in the Prime Minister's Office (PMO).

The Indian Companies Act 2013 has also introduced cyber law and cybersecurity obligations on the part of Indian directors. Some provisions for cybersecurity have been incorporated into rules framed under the Information Technology Act 2000 Update in 2013.<ref>Template:Cite web</ref>

South Korea

[edit]

Following cyberattacks in the first half of 2013, when the government, news media, television stations, and bank websites were compromised, the national government committed to the training of 5,000 new cybersecurity experts by 2017. The South Korean government blamed its northern counterpart for these attacks, as well as incidents that occurred in 2009, 2011,<ref>Template:Cite news</ref> and 2012, but Pyongyang denies the accusations.<ref>Template:Cite news</ref>

United States

[edit]
Cyber Plan
[edit]

The United States has its first fully formed cyber plan in 15 years, as a result of the release of this National Cyber plan.<ref>Template:Cite news</ref> In this policy, the US says it will: Protect the country by keeping networks, systems, functions, and data safe; Promote American wealth by building a strong digital economy and encouraging strong domestic innovation; Peace and safety should be kept by making it easier for the US to stop people from using computer tools for bad things, working with friends and partners to do this; and increase the United States' impact around the world to support the main ideas behind an open, safe, reliable, and compatible Internet.<ref>Template:Cite web</ref>

The new U.S. cyber strategy<ref>Template:Cite web</ref> seeks to allay some of those concerns by promoting responsible behavior in cyberspace, urging nations to adhere to a set of norms, both through international law and voluntary standards. It also calls for specific measures to harden U.S. government networks from attacks, like the June 2015 intrusion into the U.S. Office of Personnel Management (OPM), which compromised the records of about 4.2 million current and former government employees. And the strategy calls for the U.S. to continue to name and shame bad cyber actors, calling them out publicly for attacks when possible, along with the use of economic sanctions and diplomatic pressure.<ref>Template:Cite web</ref>

Legislation
[edit]

The 1986 Template:USC, the Computer Fraud and Abuse Act is the key legislation. It prohibits unauthorized access or damage of protected computers as defined in Template:USCSub. Although various other measures have been proposed<ref>Template:USBill</ref><ref>Template:Cite web</ref> – none have succeeded.

In 2013, executive order 13636 Improving Critical Infrastructure Cybersecurity was signed, which prompted the creation of the NIST Cybersecurity Framework.

In response to the Colonial Pipeline ransomware attack<ref>Template:Cite web</ref> President Joe Biden signed Executive Order 14028<ref>Executive Order on Improving the Nation's Cybersecurity (full text)</ref> on May 12, 2021, to increase software security standards for sales to the government, tighten detection and security on existing systems, improve information sharing and training, establish a Cyber Safety Review Board, and improve incident response.

Standardized government testing services
[edit]

The General Services Administration (GSA) hasTemplate:When standardized the penetration test service as a pre-vetted support service, to rapidly address potential vulnerabilities, and stop adversaries before they impact US federal, state and local governments. These services are commonly referred to as Highly Adaptive Cybersecurity Services (HACS). Template:Further

Agencies
[edit]

The Department of Homeland Security has a dedicated division responsible for the response system, risk management program and requirements for cybersecurity in the United States called the National Cyber Security Division.<ref>Template:Cite web</ref><ref name="CSRDC-FAQ" /> The division is home to US-CERT operations and the National Cyber Alert System.<ref name="CSRDC-FAQ">Template:Cite web</ref> The National Cybersecurity and Communications Integration Center brings together government organizations responsible for protecting computer networks and networked infrastructure.<ref>AFP-JiJi, "U.S. boots up cybersecurity center", 31 October 2009.</ref>

The third priority of the FBI is to: "Protect the United States against cyber-based attacks and high-technology crimes",<ref>Template:Cite web</ref> and they, along with the National White Collar Crime Center (NW3C), and the Bureau of Justice Assistance (BJA) are part of the multi-agency task force, The Internet Crime Complaint Center, also known as IC3.<ref>Template:Cite web</ref>

In addition to its own specific duties, the FBI participates alongside non-profit organizations such as InfraGard.<ref>Template:Cite web</ref><ref>Template:Cite web</ref>

The Computer Crime and Intellectual Property Section (CCIPS) operates in the United States Department of Justice Criminal Division. The CCIPS is in charge of investigating computer crime and intellectual property crime and is specialized in the search and seizure of digital evidence in computers and networks.<ref>Template:Cite web</ref> In 2017, CCIPS published A Framework for a Vulnerability Disclosure Program for Online Systems to help organizations "clearly describe authorized vulnerability disclosure and discovery conduct, thereby substantially reducing the likelihood that such described activities will result in a civil or criminal violation of law under the Computer Fraud and Abuse Act (18 U.S.C. § 1030)."<ref>Template:Cite web</ref>

The United States Cyber Command, also known as USCYBERCOM, "has the mission to direct, synchronize, and coordinate cyberspace planning and operations to defend and advance national interests in collaboration with domestic and international partners."<ref>Template:Cite web</ref> It has no role in the protection of civilian networks.<ref>Template:Cite speech</ref><ref>Template:Cite web</ref>

The U.S. Federal Communications Commission's role in cybersecurity is to strengthen the protection of critical communications infrastructure, to assist in maintaining the reliability of networks during disasters, to aid in swift recovery after, and to ensure that first responders have access to effective communications services.<ref>Template:Cite web</ref>

The Food and Drug Administration has issued guidance for medical devices,<ref>Template:Cite web</ref> and the National Highway Traffic Safety Administration<ref>Template:Cite web</ref> is concerned with automotive cybersecurity. After being criticized by the Government Accountability Office,<ref>Template:Cite report</ref> and following successful attacks on airports and claimed attacks on airplanes, the Federal Aviation Administration has devoted funding to securing systems on board the planes of private manufacturers, and the Aircraft Communications Addressing and Reporting System.<ref>Template:Cite web</ref> Concerns have also been raised about the future Next Generation Air Transportation System.<ref>Template:Cite web</ref>

The US Department of Defense (DoD) issued DoD Directive 8570 in 2004, supplemented by DoD Directive 8140, requiring all DoD employees and all DoD contract personnel involved in information assurance roles and activities to earn and maintain various industry Information Technology (IT) certifications in an effort to ensure that all DoD personnel involved in network infrastructure defense have minimum levels of IT industry recognized knowledge, skills and abilities (KSA). Andersson and Reimers (2019) report these certifications range from CompTIA's A+ and Security+ through the ICS2.org's CISSP, etc.<ref>Template:Cite conference</ref>

Computer emergency readiness team
[edit]

Computer emergency response team is a name given to expert groups that handle computer security incidents. In the US, two distinct organizations exist, although they do work closely together.

U.S. NRC, 10 CFR 73.54 Cybersecurity
[edit]

In the context of U.S. nuclear power plants, the U.S. Nuclear Regulatory Commission (NRC) outlines cybersecurity requirements under 10 CFR Part 73, specifically in §73.54.<ref>Details can be found in 10 CFR 73.54, Protection of digital computer and communication systems and networks.</ref>

NEI 08-09: Cybersecurity Plan for Nuclear Power Plants
[edit]

The Nuclear Energy Institute's NEI 08-09 document, Cyber Security Plan for Nuclear Power Reactors,<ref>Cyber Security Plan for Nuclear Power Reactors - Nuclear Energy Institute</ref> outlines a comprehensive framework for cybersecurity in the nuclear power industry. Drafted with input from the U.S. NRC, this guideline is instrumental in aiding licensees to comply with the Code of Federal Regulations (CFR), which mandates robust protection of digital computers and equipment and communications systems at nuclear power plants against cyber threats.<ref>Refer to NEI 08-09 for more details.</ref>

Modern warfare

[edit]

Template:Main

There is growing concern that cyberspace will become the next theater of warfare. As Mark Clayton from The Christian Science Monitor wrote in a 2015 article titled "The New Cyber Arms Race":

Template:Blockquote

This has led to new terms such as cyberwarfare and cyberterrorism. The United States Cyber Command was created in 2009<ref>Template:Cite news</ref> and many other countries have similar forces.

There are a few critical voices that question whether cybersecurity is as significant a threat as it is made out to be.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

Careers

[edit]

Cybersecurity is a fast-growing field of IT concerned with reducing organizations' risk of hack or data breaches.<ref>Template:Cite book</ref> According to research from the Enterprise Strategy Group, 46% of organizations say that they have a "problematic shortage" of cybersecurity skills in 2016, up from 28% in 2015.<ref>Template:Cite web</ref> Commercial, government and non-governmental organizations all employ cybersecurity professionals. The fastest increases in demand for cybersecurity workers are in industries managing increasing volumes of consumer data such as finance, health care, and retail.<ref>Template:Cite web</ref> However, the use of the term cybersecurity is more prevalent in government job descriptions.<ref>Template:Cite web</ref>

Typical cybersecurity job titles and descriptions include:<ref>Template:Cite web</ref>

Security analyst

[edit]
Analyzes and assesses vulnerabilities in the infrastructure (software, hardware, networks), investigates using available tools and countermeasures to remedy the detected vulnerabilities and recommends solutions and best practices. Analyzes and assesses damage to the data/infrastructure as a result of security incidents, examines available recovery tools and processes, and recommends solutions. Tests for compliance with security policies and procedures. May assist in the creation, implementation, or management of security solutions.

Security engineer

[edit]
Performs security monitoring, security and data/logs analysis, and forensic analysis, to detect security incidents, and mount the incident response. Investigates and utilizes new technologies and processes to enhance security capabilities and implement improvements. May also review code or perform other security engineering methodologies.

Security architect

[edit]
Designs a security system or major components of a security system, and may head a security design team building a new security system.<ref>Template:Cite web</ref>

Chief Information Security Officer (CISO)

[edit]
A high-level management position responsible for the entire information security division/staff. The position may include hands-on technical work.<ref>Template:Cite web</ref>

Chief Security Officer (CSO)

[edit]
A high-level management position responsible for the entire security division/staff. A newer position is now deemed needed as security risks grow.

Data Protection Officer (DPO)

[edit]
A DPO is tasked with monitoring compliance with data protection laws (such as GDPR), data protection policies, awareness-raising, training, and audits.<ref>Template:Cite web</ref>

Security Consultant/Specialist/Intelligence

[edit]
Broad titles that encompass any one or all of the other roles or titles tasked with protecting computers, networks, software, data or information systems against viruses, worms, spyware, malware, intrusion detection, unauthorized access, denial-of-service attacks, and an ever-increasing list of attacks by hackers acting as individuals or as part of organized crime or foreign governments.

Student programs are also available for people interested in beginning a career in cybersecurity.<ref>Template:Cite web</ref><ref>Template:Cite web</ref> Meanwhile, a flexible and effective option for information security professionals of all experience levels to keep studying is online security training, including webcasts.<ref>Template:Cite web</ref><ref>Template:Cite web</ref> A wide range of certified courses are also available.<ref>Template:Cite web</ref>

In the United Kingdom, a nationwide set of cybersecurity forums, known as the U.K Cyber Security Forum, were established supported by the Government's cybersecurity strategy<ref>Template:Cite web</ref> in order to encourage start-ups and innovation and to address the skills gap<ref>Template:Cite web</ref> identified by the U.K Government.

In Singapore, the Cyber Security Agency has issued a Singapore Operational Technology (OT) Cybersecurity Competency Framework (OTCCF). The framework defines emerging cybersecurity roles in Operational Technology. The OTCCF was endorsed by the Infocomm Media Development Authority (IMDA). It outlines the different OT cybersecurity job positions as well as the technical skills and core competencies necessary. It also depicts the many career paths available, including vertical and lateral advancement opportunities.<ref>Template:Cite press release</ref>

Terminology

[edit]

The following terms used with regards to computer security are explained below:

  • Access authorization restricts access to a computer to a group of users through the use of authentication systems. These systems can protect either the whole computer, such as through an interactive login screen, or individual services, such as a FTP server. There are many methods for identifying and authenticating users, such as passwords, identification cards, smart cards, and biometric systems.
  • Anti-virus software consists of computer programs that attempt to identify, thwart, and eliminate computer viruses and other malicious software (malware).
  • Applications are executable code, so general corporate practice is to restrict or block users the power to install them; to install them only when there is a demonstrated need (e.g. software needed to perform assignments); to install only those which are known to be reputable (preferably with access to the computer code used to create the application), and to reduce the attack surface by installing as few as possible. They are typically run with least privilege, with a robust process in place to identify, test and install any released security patches or updates for them.
    • For example, programs can be installed into an individual user's account, which limits the program's potential access, as well as being a means control which users have specific exceptions to policy. In Linux, FreeBSD, OpenBSD, and other Unix-like operating systems there is an option to further restrict an application using chroot or other means of restricting the application to its own 'sandbox'. For example. Linux provides namespaces, and Cgroups to further restrict the access of an application to system resources.
    • Generalized security frameworks such as SELinux or AppArmor help administrators control access.
    • Java and other languages which compile to Java byte code and run in the Java virtual machine can have their access to other applications controlled at the virtual machine level.
    • Some software can be run in software containers which can even provide their own set of system libraries, limiting the software's, or anyone controlling it, access to the server's versions of the libraries.
  • Authentication techniques can be used to ensure that communication end-points are who they say they are.
  • Automated theorem proving and other verification tools can be used to enable critical algorithms and code used in secure systems to be mathematically proven to meet their specifications.
  • Backups are one or more copies kept of important computer files. Typically, multiple copies will be kept at different locations so that if a copy is stolen or damaged, other copies will still exist.
  • Capability and access control list techniques can be used to ensure privilege separation and mandatory access control. Capabilities vs. ACLs discusses their use.
  • Chain of trust techniques can be used to attempt to ensure that all software loaded has been certified as authentic by the system's designers.
  • Confidentiality is the nondisclosure of information except to another authorized person.<ref>Template:Cite web</ref>
  • Cryptographic techniques can be used to defend data in transit between systems, reducing the probability that the data exchange between systems can be intercepted or modified.
  • Cyber attribution, is an attribution of cybercrime, i.e., finding who perpetrated a cyberattack.
  • Cyberwarfare is an Internet-based conflict that involves politically motivated attacks on information and information systems. Such attacks can, for example, disable official websites and networks, disrupt or disable essential services, steal or alter classified data, and cripple financial systems.
  • Data integrity is the accuracy and consistency of stored data, indicated by an absence of any alteration in data between two updates of a data record.<ref>Template:Cite web</ref>
File:Encryption - decryption.svg
Cryptographic techniques involve transforming information, scrambling it, so it becomes unreadable during transmission. The intended recipient can unscramble the message; ideally, eavesdroppers cannot.
  • Encryption is used to protect the confidentiality of a message. Cryptographically secure ciphers are designed to make any practical attempt of breaking them infeasible. Symmetric-key ciphers are suitable for bulk encryption using shared keys, and public-key encryption using digital certificates can provide a practical solution for the problem of securely communicating when no key is shared in advance.
  • Endpoint security software aids networks in preventing malware infection and data theft at network entry points made vulnerable by the prevalence of potentially infected devices such as laptops, mobile devices, and USB drives.<ref>Template:Cite web</ref>
  • Firewalls serve as a gatekeeper system between networks, allowing only traffic that matches defined rules. They often include detailed logging, and may include intrusion detection and intrusion prevention features. They are near-universal between company local area networks and the Internet, but can also be used internally to impose traffic rules between networks if network segmentation is configured.
  • A hacker is someone who seeks to breach defenses and exploit weaknesses in a computer system or network.
  • Honey pots are computers that are intentionally left vulnerable to attack by crackers. They can be used to catch crackers and to identify their techniques.
  • Intrusion-detection systems are devices or software applications that monitor networks or systems for malicious activity or policy violations.
  • A microkernel is an approach to operating system design which has only the near-minimum amount of code running at the most privileged level – and runs other elements of the operating system such as device drivers, protocol stacks and file systems, in the safer, less privileged user space.
  • Pinging. The standard ping application can be used to test if an IP address is in use. If it is, attackers may then try a port scan to detect which services are exposed.
  • A port scan is used to probe an IP address for open ports to identify accessible network services and applications.
  • A key logger is spyware that silently captures and stores each keystroke that a user types on the computer's keyboard.
  • Social engineering is the use of deception to manipulate individuals to breach security.
  • Logic bombs is a type of malware added to a legitimate program that lies dormant until it is triggered by a specific event.
  • A unikernel is a computer program that runs on a minimalistic operating system where a single application is allowed to run (as opposed to a general purpose operating system where many applications can run at the same time). This approach to minimizing the attack surface is adopted mostly in cloud environments where software is deployed in virtual machines.
  • Zero trust security means that no one is trusted by default from inside or outside the network, and verification is required from everyone trying to gain access to resources on the network.

History

[edit]

Since the Internet's arrival and with the digital transformation initiated in recent years, the notion of cybersecurity has become a familiar subject in both our professional and personal lives. Cybersecurity and cyber threats have been consistently present for the last 60 years of technological change. In the 1970s and 1980s, computer security was mainly limited to academia until the conception of the Internet, where, with increased connectivity, computer viruses and network intrusions began to take off. After the spread of viruses in the 1990s, the 2000s marked the institutionalization of organized attacks such as distributed denial of service.<ref>Template:Cite web</ref> This led to the formalization of cybersecurity as a professional discipline.<ref>Template:Cite web</ref>

The April 1967 session organized by Willis Ware at the Spring Joint Computer Conference, and the later publication of the Ware Report, were foundational moments in the history of the field of computer security.<ref name="MAHC.2016.48">Template:Cite journal</ref> Ware's work straddled the intersection of material, cultural, political, and social concerns.<ref name="MAHC.2016.48" />

A 1977 NIST publication<ref>Template:Cite web</ref> introduced the CIA triad of confidentiality, integrity, and availability as a clear and simple way to describe key security goals.<ref>Template:Cite web</ref> While still relevant, many more elaborate frameworks have since been proposed.<ref>Template:Cite web</ref><ref>Template:Cite report Note: this document has been superseded by later versions.</ref>

However, in the 1970s and 1980s, there were no grave computer threats because computers and the internet were still developing, and security threats were easily identifiable. More often, threats came from malicious insiders who gained unauthorized access to sensitive documents and files. Although malware and network breaches existed during the early years, they did not use them for financial gain. By the second half of the 1970s, established computer firms like IBM started offering commercial access control systems and computer security software products.<ref>Template:Cite journal</ref>

One of the earliest examples of an attack on a computer network was the computer worm Creeper written by Bob Thomas at BBN, which propagated through the ARPANET in 1971.<ref>Template:Cite web</ref> The program was purely experimental in nature and carried no malicious payload. A later program, Reaper, was created by Ray Tomlinson in 1972 and used to destroy Creeper.Template:Citation needed

Between September 1986 and June 1987, a group of German hackers performed the first documented case of cyber espionage.<ref>Template:Cite web</ref> The group hacked into American defense contractors, universities, and military base networks and sold gathered information to the Soviet KGB. The group was led by Markus Hess, who was arrested on 29 June 1987. He was convicted of espionage (along with two co-conspirators) on 15 Feb 1990.

In 1988, one of the first computer worms, called the Morris worm, was distributed via the Internet. It gained significant mainstream media attention.<ref>Template:Cite web</ref>

Netscape started developing the protocol SSL, shortly after the National Center for Supercomputing Applications (NCSA) launched Mosaic 1.0, the first web browser, in 1993.<ref name=":0">Template:Cite book</ref><ref>Template:Cite web</ref> Netscape had SSL version 1.0 ready in 1994, but it was never released to the public due to many serious security vulnerabilities.<ref name=":0" /> However, in 1995, Netscape launched Version 2.0.<ref>Template:Cite web</ref>

The National Security Agency (NSA) is responsible for the protection of U.S. information systems and also for collecting foreign intelligence.<ref>Template:Cite news</ref> The agency analyzes commonly used software and system configurations to find security flaws, which it can use for offensive purposes against competitors of the United States.<ref name="perlroth">Template:Cite newsTemplate:Cbignore</ref>

NSA contractors created and sold click-and-shoot attack tools to US agencies and close allies, but eventually, the tools made their way to foreign adversaries.<ref>Template:Cite web</ref> In 2016, NSAs own hacking tools were hacked, and they have been used by Russia and North Korea.Template:Citation needed NSA's employees and contractors have been recruited at high salaries by adversaries, anxious to compete in cyberwarfare.Template:Citation needed In 2007, the United States and Israel began exploiting security flaws in the Microsoft Windows operating system to attack and damage equipment used in Iran to refine nuclear materials. Iran responded by heavily investing in their own cyberwarfare capability, which it began using against the United States.<ref name="perlroth" />

Notable scholars

[edit]

Template:Columns-list

See also

[edit]

Template:Columns-list

References

[edit]

Template:Reflist

Further reading

[edit]

Template:Library resources box

Template:Commons category Template:Prone to spam

Template:Information security Template:Computer science Template:Authority control