Jump to content

Chemical symbol

From Niidae Wiki

Template:Short description Template:More citations needed

File:Simple Periodic Table Chart-blocks.svg
The periodic table, elements being denoted by their symbols

Chemical symbols are the abbreviations used in chemistry, mainly for chemical elements; but also for functional groups, chemical compounds, and other entities. Element symbols for chemical elements, also known as atomic symbols, normally consist of one or two letters from the Latin alphabet and are written with the first letter capitalised.

History

[edit]

Earlier symbols for chemical elements stem from classical Latin and Greek vocabulary. For some elements, this is because the material was known in ancient times, while for others, the name is a more recent invention. For example, Pb is the symbol for lead (plumbum in Latin); Hg is the symbol for mercury (hydrargyrum in Greek); and He is the symbol for helium (a Neo-Latin name) because helium was not known in ancient Roman times. Some symbols come from other sources, like W for tungsten (Wolfram in German) which was not known in Roman times.

A three-letter temporary symbol may be assigned to a newly synthesized (or not yet synthesized) element. For example, "Uno" was the temporary symbol for hassium (element 108) which had the temporary name of unniloctium, based on the digits of its atomic number. There are also some historical symbols that are no longer officially used.

Extension of the symbol

[edit]
File:Atomic Symbol Mg.svg
Annotated example of an atomic symbol

In addition to the letters for the element itself, additional details may be added to the symbol as superscripts or subscripts a particular isotope, ionization, or oxidation state, or other atomic detail.<ref>Template:Cite report</ref> A few isotopes have their own specific symbols rather than just an isotopic detail added to their element symbol.

Attached subscripts or superscripts specifying a nuclide or molecule have the following meanings and positions:

  • The nucleon number (mass number) is shown in the left superscript position (e.g., 14N). This number defines the specific isotope. Various letters, such as "m" and "f" may also be used here to indicate a nuclear isomer (e.g., 99mTc). Alternately, the number here can represent a specific spin state (e.g., 1O2). These details can be omitted if not relevant in a certain context.
  • The proton number (atomic number) may be indicated in the left subscript position (e.g., 64Gd). The atomic number is redundant to the chemical element, but is sometimes used to emphasize the change of numbers of nucleons in a nuclear reaction.
  • If necessary, a state of ionization or an excited state may be indicated in the right superscript position (e.g., state of ionization Ca2+).
  • The number of atoms of an element in a molecule or chemical compound is shown in the right subscript position (e.g., N2 or Fe2O3). If this number is one, it is normally omitted - the number one is implicitly understood if unspecified.
  • A radical is indicated by a dot on the right side (e.g., Cl for a neutral chlorine atom). This is often omitted unless relevant to a certain context because it is already deducible from the charge and atomic number, as generally true for nonbonded valence electrons in skeletal structures.

Many functional groups also have their own chemical symbol, e.g. Ph for the phenyl group, and Me for the methyl group.

A list of current, dated, as well as proposed and historical signs and symbols is included here with its signification. Also given is each element's atomic number, atomic weight, or the atomic mass of the most stable isotope, group and period numbers on the periodic table, and etymology of the symbol.

Symbols for chemical elements

[edit]

Template:Sort underTemplate:Sticky header

List of chemical elements
Z Symbol Name Origin of name<ref>Template:Cite web</ref><ref>Template:Cite web</ref>
1 H Hydrogen Greek elements hydro- and -gen, meaning 'water-forming'
2 He Helium Greek hḗlios, 'sun'
3 Li Lithium Greek líthos, 'stone'
4 Be Beryllium beryl, a mineral (ultimately from the name of Belur in southern India)
5 B Boron borax, a mineral (from Arabic bawraq)
6 C Carbon Latin carbo, 'coal'
7 N Nitrogen Greek nítron and -gen, meaning 'niter-forming'
8 O Oxygen Greek oxy- and -gen, meaning 'acid-forming'
9 F Fluorine Latin fluere, 'to flow'
10 Ne Neon Greek néon, 'new'
11 Na Sodium English soda (the symbol Na is derived from Neo-Latin natrium, coined from German Natron, 'natron')
12 Mg Magnesium Magnesia, a district of Eastern Thessaly in Greece
13 Al Aluminium alumina, from Latin alumen (gen. alumni), 'bitter salt, alum'
14 Si Silicon Latin silex, 'flint' (originally silicium)
15 P Phosphorus Greek phōsphóros, 'light-bearing'
16 S Sulfur Latin sulphur, 'brimstone'
17 Cl Chlorine Greek chlōrós, 'greenish yellow'
18 Ar Argon Greek argós, 'idle' (because of its inertness)
19 K Potassium Neo-Latin potassa, 'potash' (the symbol K is derived from Latin kalium)
20 Ca Calcium Latin calx, 'lime'
21 Sc Scandium Latin Scandia, 'Scandinavia'
22 Ti Titanium Titans, the sons of the Earth goddess of Greek mythology
23 V Vanadium Vanadis, an Old Norse name for the Scandinavian goddess Freyja
24 Cr Chromium Greek chróma, 'colour'
25 Mn Manganese corrupted from magnesia negra; see Magnesium
26 Fe Iron English word (the symbol Fe is derived from Latin ferrum)
27 Co Cobalt German Kobold, 'goblin'
28 Ni Nickel Nickel, a mischievous sprite of German miner mythology
29 Cu Copper English word, from Latin cuprum, from Ancient Greek Kýpros 'Cyprus'
30 Zn Zinc Most likely from German Zinke, 'prong' or 'tooth', though some suggest Persian sang, 'stone'
31 Ga Gallium Latin Gallia, 'France'
32 Ge Germanium Latin Germania, 'Germany'
33 As Arsenic French arsenic, from Greek arsenikón 'yellow arsenic' (influenced by arsenikós, 'masculine' or 'virile'), from a West Asian wanderword ultimately from Old Iranian *zarniya-ka, 'golden'
34 Se Selenium Greek selḗnē, 'moon'
35 Br Bromine Greek brômos, 'stench'
36 Kr Krypton Greek kryptós, 'hidden'
37 Rb Rubidium Latin rubidus, 'deep red'
38 Sr Strontium Strontian, a village in Scotland
39 Y Yttrium Ytterby, a village in Sweden
40 Zr Zirconium zircon, a mineral
41 Nb Niobium Niobe, daughter of king Tantalus from Greek mythology
42 Mo Molybdenum Greek molýbdaina, 'piece of lead', from mólybdos, 'lead'
43 Tc Technetium Greek tekhnētós, 'artificial'
44 Ru Ruthenium Neo-Latin Ruthenia, 'Russia'
45 Rh Rhodium Greek rhodóeis, 'rose-coloured', from rhódon, 'rose'
46 Pd Palladium the asteroid Pallas, considered a planet at the time
47 Ag Silver English word (The symbol derives from Latin argentum)
48 Cd Cadmium Neo-Latin cadmia, from King Kadmos
49 In Indium Latin indicum, 'indigo' (colour found in its spectrum)
50 Sn Tin English word (The symbol derives from Latin stannum)
51 Sb Antimony Latin antimonium, the origin of which is uncertain: folk etymologies suggest it is derived from Greek antí ('against') + mónos ('alone'), or Old French anti-moine, 'Monk's bane', but it could plausibly be from or related to Arabic ʾiṯmid, 'antimony', reformatted as a Latin word. (The symbol derives from Latin stibium 'stibnite'.)
52 Te Tellurium Latin tellus, 'the ground, earth'
53 I Iodine French iode, from Greek ioeidḗs, 'violet'
54 Xe Xenon Greek xénon, neuter form of xénos 'strange'
55 Cs Caesium Latin caesius, 'sky-blue'
56 Ba Barium Greek barýs, 'heavy'
57 La Lanthanum Greek lanthánein, 'to lie hidden'
58 Ce Cerium the dwarf planet Ceres, considered a planet at the time
59 Pr Praseodymium Greek prásios dídymos, 'green twin'
60 Nd Neodymium Greek néos dídymos, 'new twin'
61 Pm Promethium Prometheus of Greek mythology
62 Sm Samarium samarskite, a mineral named after Colonel Vasili Samarsky-Bykhovets, Russian mine official
63 Eu Europium Europe
64 Gd Gadolinium gadolinite, a mineral named after Johan Gadolin, Finnish chemist, physicist and mineralogist
65 Tb Terbium Ytterby, a village in Sweden
66 Dy Dysprosium Greek dysprósitos, 'hard to get'
67 Ho Holmium Neo-Latin Holmia, 'Stockholm'
68 Er Erbium Ytterby, a village in Sweden
69 Tm Thulium Thule, the ancient name for an unclear northern location
70 Yb Ytterbium Ytterby, a village in Sweden
71 Lu Lutetium Latin Lutetia, 'Paris'
72 Hf Hafnium Neo-Latin Hafnia, 'Copenhagen' (from Danish havn)
73 Ta Tantalum King Tantalus, father of Niobe from Greek mythology
74 W Tungsten Swedish tung sten, 'heavy stone' (The symbol is from wolfram, the old name of the tungsten mineral wolframite)
75 Re Rhenium Latin Rhenus, 'the Rhine'
76 Os Osmium Greek osmḗ, 'smell'
77 Ir Iridium Iris, the Greek goddess of the rainbow
78 Pt Platinum Spanish platina, 'little silver', from plata 'silver'
79 Au Gold English word (The symbol derives from Latin aurum)
80 Hg Mercury Mercury, Roman god of commerce, communication, and luck, known for his speed and mobility (The symbol is from the element's Latin name hydrargyrum, derived from Greek hydrárgyros, 'water-silver')
81 Tl Thallium Greek thallós, 'green shoot or twig'
82 Pb Lead English word (The symbol derives from Latin plumbum)
83 Bi Bismuth German Wismut, from weiß Masse 'white mass', unless from Arabic
84 Po Polonium Latin Polonia, 'Poland' (the home country of Marie Curie)
85 At Astatine Greek ástatos, 'unstable'
86 Rn Radon radium
87 Fr Francium France
88 Ra Radium French radium, from Latin radius, 'ray'
89 Ac Actinium Greek aktís, 'ray'
90 Th Thorium Thor, the Scandinavian god of thunder
91 Pa Protactinium proto- (from Greek prôtos, 'first, before') + actinium, which is produced through the radioactive decay of protactinium
92 U Uranium Uranus, the seventh planet in the Solar System
93 Np Neptunium Neptune, the eighth planet in the Solar System
94 Pu Plutonium the dwarf planet Pluto, considered the ninth planet in the Solar System at the time
95 Am Americium The Americas, as the element was first synthesised on the continent, by analogy with europium
96 Cm Curium Pierre Curie and Marie Curie, French physicists and chemists
97 Bk Berkelium Berkeley, California, where the element was first synthesised, by analogy with terbium
98 Cf Californium California, where the element was first synthesised
99 Es Einsteinium Albert Einstein, German physicist
100 Fm Fermium Enrico Fermi, Italian physicist
101 Md Mendelevium Dmitri Mendeleev, Russian chemist and inventor who proposed the periodic table
102 No Nobelium Alfred Nobel, Swedish chemist and engineer
103 Lr Lawrencium Ernest O. Lawrence, American physicist
104 Rf Rutherfordium Ernest Rutherford, New Zealand chemist and physicist
105 Db Dubnium Dubna, Russia, where the Joint Institute for Nuclear Research is located
106 Sg Seaborgium Glenn T. Seaborg, American chemist
107 Bh Bohrium Niels Bohr, Danish physicist
108 Hs Hassium Neo-Latin Hassia, 'Hesse' (a state in Germany)
109 Mt Meitnerium Lise Meitner, Austrian physicist
110 Ds Darmstadtium Darmstadt, Germany, where the element was first synthesised
111 Rg Roentgenium Wilhelm Conrad Röntgen, German physicist
112 Cn Copernicium Nicolaus Copernicus, Polish astronomer
113 Nh Nihonium Japanese Nihon, 'Japan' (where the element was first synthesised)
114 Fl Flerovium Flerov Laboratory of Nuclear Reactions, part of JINR, where the element was synthesised; itself named after Georgy Flyorov, Russian physicist
115 Mc Moscovium Moscow Oblast, Russia, where the element was first synthesised
116 Lv Livermorium Lawrence Livermore National Laboratory in Livermore, California, which collaborated with JINR on its synthesis
117 Ts Tennessine Tennessee, United States
118 Og Oganesson Yuri Oganessian, Russian physicist

Symbols and names not currently used

[edit]

Template:More citations needed The following is a list of symbols and names formerly used or suggested for elements, including symbols for placeholder names and names given by discredited claimants for discovery. Template:Sticky header

Systematic chemical symbols

[edit]

These symbols are based on systematic element names, which are now replaced by trivial (non-systematic) element names and symbols. Data is given in order of: atomic number, systematic symbol, systematic name; trivial symbol, trivial name.

When elements beyond oganesson (starting with ununennium, Uue, element 119), are discovered; their systematic name and symbol will presumably be superseded by a trivial name and symbol.

Alchemical symbols

[edit]

Template:Main The following ideographic symbols were used in alchemy to denote elements known since ancient times. Not included in this list are spurious elements, such as the classical elements fire and water or phlogiston, and substances now known to be compounds. Many more symbols were in at least sporadic use: one early 17th-century alchemical manuscript lists 22 symbols for mercury alone.<ref name=Crosland/>

Planetary names and symbols for the metals – the seven planets and seven metals known since Classical times in Europe and the Mideast – was ubiquitous in alchemy. The association of what are anachronistically known as planetary metals started breaking down with the discovery of antimony, bismuth and zinc in the 16th century. Alchemists would typically call the metals by their planetary names, e.g. "Saturn" for lead and "Mars" for iron; compounds of tin, iron and silver continued to be called "jovial", "martial" and "lunar"; or "of Jupiter", "of Mars" and "of the moon", through the 17th century. The tradition remains today with the name of the element mercury, where chemists decided the planetary name was preferable to common names like "quicksilver", and in a few archaic terms such as lunar caustic (silver nitrate) and saturnism (lead poisoning).<ref name=Crosland>Maurice Crosland (2004) Historical Studies in the Language of Chemistry</ref>

Template:Sticky header

Daltonian symbols

[edit]
File:Dalton's Element List.jpg
Dalton's symbols for the more common elements, as of 1806, and the relative weights he calculated. The symbols for magnesium and calcium ("lime") were replaced by 1808, and that for gold was simplified.

The following symbols were employed by John Dalton in the early 1800s as the periodic table of elements was being formulated. Not included in this list are substances now known to be compounds, such as certain rare-earth mineral blends. Modern alphabetic notation was introduced in 1814 by Jöns Jakob Berzelius; its precursor can be seen in Dalton's circled letters for the metals, especially in his augmented table from 1810.<ref>Berzelius, Jöns Jakob. "Essay on the Cause of Chemical Proportions, and on Some Circumstances Relating to Them: Together with a Short and Easy Method of Expressing Them." Annals of Philosophy 2, Pp.443–454 (1813); 3, Pp.51–52, 93–106, 244–255, 353–364 (1814); (Subsequently republished in "A Source Book in Chemistry, 1400-1900", eds. Leicester, Henry M. & Herbert S. Klickstein. 1952.)</ref> A trace of Dalton's conventions also survives in ball-and-stick models of molecules, where balls for carbon are black and for oxygen red.

Daltonian symbols for the elements
Symbol Dalton's name Modern name Atomic
number
Notes Refs
img. char.
File:Hydrogen symbol (Dalton).svg hydrogen 1 or <ref name=dalton1808ansocp>Template:Cite book</ref>
File:Beryllium symbol (Dalton).svg glucine beryllium 4 alchemical symbol for 'sugar' <ref name=dalton1810ansocp/>
File:New moon symbol.svg carbone, carbon carbon 6 <ref name=dalton1808ansocp/>
File:Nitrogen symbol (Dalton).svg azote nitrogen/azote 7 alchemical symbol for niter <ref name=dalton1808ansocp/>
File:Oxygen symbol (Dalton).svg oxygen 8 or <ref name=dalton1808ansocp/>
File:Sodium symbol (Dalton).svg soda sodium 11 <ref name=dalton1808ansocp/>
File:Magnesium symbol (Dalton).svg magnesia magnesium 12 alchemical symbol for magnesia <ref name=dalton1808ansocp/>
File:Aluminium symbol (Dalton).svg alumine aluminium 13 (4 dots) <ref name=dalton1808ansocp/>
File:Silicon symbol (Dalton).svg 🟕 silex silicon 14 <ref name=dalton1810ansocp>Template:Cite book</ref>
File:Phosphorus symbol (Dalton).svg phosphorus 15 (3 radii) <ref name=dalton1808ansocp/>
File:Sulphur symbol (Dalton).svg 🜨 sulphur 16 <ref name=dalton1808ansocp/>
File:Potassium symbol (Dalton).svg potash potassium 19 (3 vertical lines) <ref name=dalton1808ansocp/>
File:Calcium symbol (Dalton).svg lime calcium 20 or ◎ <ref name=dalton1808ansocp/>
File:Titanium symbol (Dalton).svg titanium 22 (enclosing circle) Tit <ref name=dalton1810ansocp/>
File:Manganese symbol (Dalton).svg manganese 25 (enclosing circle) Ma <ref name=dalton1810ansocp/>
File:Iron symbol (Dalton).svg iron 26 <ref name=dalton1808ansocp/>
File:Nickel symbol (Dalton).svg nickel 28 <ref name=dalton1808ansocp/>
File:Cobalt symbol (Dalton).svg cobalt 27 (enclosing circle) Cob <ref name=dalton1810ansocp/>
File:Copper symbol (Dalton).svg copper 29 (black letter in red circle) <ref name=dalton1808ansocp/>
File:Zinc symbol (Dalton).svg zinc 30 <ref name=dalton1808ansocp/>
File:Arsenic symbol (Dalton).svg arsenic 33 (enclosing circle) Ar <ref name=dalton1810ansocp/>
File:Strontium symbol (Dalton).svg strontian strontium 38 (4 ticks) <ref name=dalton1808ansocp/>
File:Yttrium symbol (Dalton).svg ⊕︀︀ yttria yttrium 39 (plus does not touch circle) <ref name=dalton1810ansocp/>
File:Zirconium symbol (Dalton).svg zircone zirconium 40 (vertical zigzag) <ref name=dalton1810ansocp/>
File:Silver symbol (Dalton).svg silver 47 <ref name=dalton1808ansocp/>
File:Tin symbol (Dalton).svg tin 50 <ref name=dalton1810ansocp/>
File:Antimony symbol (Dalton).svg antimony 51 (enclosing circle) An <ref name=dalton1810ansocp/>
File:Barium symbol (Dalton).svg barytes barium 56 (6 ticks) <ref name=dalton1808ansocp/>
File:Cerium symbol (Dalton).svg cerium 58 (enclosing circle) Ce <ref name=dalton1810ansocp/>
File:Tungsten symbol (Dalton).svg tungsten 74 (enclosing circle) Tu <ref name=dalton1810ansocp/>
File:Platinum symbol (Dalton).svg platina platinum 78 (black letter in red circle) <ref name=dalton1808ansocp/>
File:Gold symbol (Dalton).svg gold 79 <ref name=dalton1808ansocp/>
File:Mercury symbol (Dalton).svg mercury 80 (dotted inside perimeter) <ref name=dalton1808ansocp/>
File:Lead symbol (Dalton).svg lead 82 <ref name=dalton1808ansocp/>
File:Bismuth symbol (Dalton).svg bismuth 83 <ref name=dalton1810ansocp/>
File:Uranium symbol (Dalton).svg uranium 92 <ref name=dalton1810ansocp/>

Symbols for named isotopes

[edit]

The following is a list of isotopes which have been given unique symbols. This is not a list of current systematic symbols (in the Template:SupAtom form); such a list can instead be found in Template:Navbox element isotopes. The symbols for isotopes of hydrogen, deuterium (D) and tritium (T), are still in use today, as is thoron (Tn) for radon-220 (though not actinon; An usually instead means a generic actinide). Heavy water and other deuterated solvents are commonly used in chemistry, and it is convenient to use a single character rather than a symbol with a subscript in these cases. The practice also continues with tritium compounds. When the name of the solvent is given, a lowercase d is sometimes used. For example, dTemplate:Sub-benzene or CTemplate:SubDTemplate:Sub can be used instead of CTemplate:Sub[[[:Template:Sup]]HTemplate:Sub].<ref name="SectionH">Template:Cite web</ref>

The symbols for isotopes of elements other than hydrogen and radon are no longer used in the scientific community. Many of these symbols were designated during the early years of radiochemistry, and several isotopes (namely those in the decay chains of actinium, radium, and thorium) bear placeholder names using the early naming system devised by Ernest Rutherford.<ref>Template:Cite journal</ref> Template:Sticky header

Other symbols

[edit]

Template:See also

General: Template:Div col

Template:Div col end From organic chemistry: Template:Div col

Template:Div col end

Exotic atoms: Template:Div col

Template:Div col end

Hazard pictographs are another type of symbols used in chemistry.

See also

[edit]

Notes

[edit]

Template:Reflist

References

[edit]

Template:Reflist

[edit]

Template:Commons category

Template:Navbox periodic table Template:Portal bar

pl:Symbol chemiczny