Jump to content

Basis function

From Niidae Wiki

Template:Short description Template:Multiple issues In mathematics, a basis function is an element of a particular basis for a function space. Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors.

In numerical analysis and approximation theory, basis functions are also called blending functions, because of their use in interpolation: In this application, a mixture of the basis functions provides an interpolating function (with the "blend" depending on the evaluation of the basis functions at the data points).

Examples

[edit]

Monomial basis for Cω

[edit]

The monomial basis for the vector space of analytic functions is given by <math display="block">\{x^n \mid n\in\N\}.</math>

This basis is used in Taylor series, amongst others.

Monomial basis for polynomials

[edit]

The monomial basis also forms a basis for the vector space of polynomials. After all, every polynomial can be written as <math>a_0 + a_1x^1 + a_2x^2 + \cdots + a_n x^n</math> for some <math>n \in \mathbb{N}</math>, which is a linear combination of monomials.

Fourier basis for L2[0,1]

[edit]

Sines and cosines form an (orthonormal) Schauder basis for square-integrable functions on a bounded domain. As a particular example, the collection <math display="block">\{\sqrt{2}\sin(2\pi n x) \mid n \in \N \} \cup \{\sqrt{2} \cos(2\pi n x) \mid n \in \N \} \cup \{1\}</math> forms a basis for L2[0,1].

See also

[edit]

Template:Div col

Template:Div col end

References

[edit]

<references />