Jump to content

Andaman Sea

From Niidae Wiki
Revision as of 04:53, 26 March 2025 by imported>Declangi (Tamil: use tam parameter in Template:Infobox Chinese)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Template:Short description Template:Use dmy dates Template:Infobox sea Template:Infobox Chinese

The Andaman Sea (historically also known as the Burma Sea)<ref name="IHO" /> is a marginal sea of the northeastern Indian Ocean bounded by the coastlines of Myanmar and Thailand along the Gulf of Martaban and the west side of the Malay Peninsula, and separated from the Bay of Bengal to its west by the Andaman Islands and the Nicobar Islands. Its southern end is at Breueh Island just north of Sumatra, with the Strait of Malacca further southeast.

Traditionally, the sea has been used for fishery and transportation of goods between the coastal countries and its coral reefs and islands, which are popular tourist destinations. The fishery and tourist infrastructure was severely damaged by the December 2004 Indian Ocean earthquake and tsunami.

Geography

[edit]

Location

[edit]

The Andaman Sea, which extends over 92°E to 100°E and 4°N to 20°N, occupies a very significant position in the Indian Ocean, yet remained unexplored for a long period. To the south of Myanmar, west of Thailand, and north of Indonesia, this sea is separated from the Bay of Bengal by the Andaman and Nicobar Islands and an associated chain of sea mounts along the Indo-Burmese plate boundary. The Strait of Malacca (between the Malay Peninsula and Sumatra) forms the southern exitway of the basin, which is Template:Convert wide and Template:Convert deep.

Extent

[edit]

Template:Anchor The International Hydrographic Organization defines the limits of the "Andaman or Burma Sea" as follows:<ref name="IHO">Template:Cite web</ref>Template:RP

On the Southwest. A line running from "Oedjong Raja" ["Ujung Raja" or "Point Raja"] (Template:Coord) in Sumatra to Poeloe Bras (Breuëh) and on through the Western Islands of the Nicobar Group to Sandy Point in Little Andaman Island, in such a way that all the narrow waters appertain to the Burma Sea.

On the Northwest. The Eastern limit of the Bay of Bengal [A line running from Cape Negrais (16°03'N) in Burma [Myanmar] through the larger islands of the Andaman group, in such a way that all the narrow waters between the islands lie to the Eastward of the line and are excluded from the Bay of Bengal, as far as a point in Little Andaman Island in latitude 10°48'N, longitude 92°24'E].

On the Southeast. A line joining Lem Voalan (7°47'N) in Siam [Thailand], and Pedropunt (5°40'N) in Sumatra.

Oedjong means "cape" and Lem means "point in the Dutch language on maps of the Netherlands East Indies (Indonesia).<ref name=oedjong1>Glossary of Terms Appearing on Maps of the Netherlands East Indies, United States Army Map Service, page 115, 93.</ref> Lem Voalan [Phromthep Cape] is the southern extremity of Goh Puket (Phuket Island).<ref>Template:Cite book</ref>

Exclusive economic zone

[edit]

Exclusive economic zones in Andaman Sea:<ref>Template:Cite web</ref>

Number Country Area (Km2)
1 Template:IND - Andaman and Nicobar Islands 659,590
2 Template:MYA - Mainland 511,389
3 Template:THA - Andaman Sea 118,714
4 Template:IDN - Northeast Aceh 76,500
Total Andaman Sea -

Geology

[edit]
File:AndamanSeaNASA1.jpg
Satellite image of the Andaman Sea showing the green algae and silt deposits due to the Irrawaddy River in its northern part

The northern and eastern side of the basin is shallow, as the continental shelf off the coast of Myanmar and Thailand extends over Template:Convert (marked by Template:Convert isobath). About 45 percent of the basin area is shallower (less than Template:Convert depth), which is the direct consequence of the presence of the wider shelf. The continental slope which follows the eastern shelf is quite steep between 9°N and 14°N. Here, the perspective view of the submarine topography sectioned along 95°E exposes the abrupt rise in depth of sea by about Template:Convert within a short horizontal distance of a degree. Isobaths corresponding to Template:Convert are also shown in the figure to emphasize the steepness of the slope. Further, it may be noted that the deep ocean is also not free from sea mounts; hence only around 15 percent of the total area is deeper than Template:Convert.<ref name="indjst.org">S. R. Kiran (2017) General Circulation and Principal Wave Modes in Andaman Sea from Observations, Indian Journal of Science and Technology Template:ISSN</ref>

File:The Bathymetry (in metres) of A-SEA in 2D and 3D (sectioned along 95E).png
The bathymetry (in metres) of the Andaman Sea in 2D and 3D (sectioned along 95°E)<ref name="indjst.org"/>
File:Percentage of total area of A-SEA corresponding to diferent ranges of depth.png
Percentage of the total area of Andaman Sea corresponding to different depth ranges<ref name="indjst.org"/>

The northern and eastern parts are shallower than Template:Convert due to the silt deposited by the Irrawaddy River. This major river flows into the sea from the north through Myanmar. The western and central areas are Template:Convert deep. Less than 5% of the sea is deeper than Template:Convert, and in a system of submarine valleys east of the Andaman-Nicobar Ridge, the depth exceeds Template:Convert.<ref name=brit/> The sea floor is covered with pebbles, gravel, and sand.<ref name=bse/>

The western boundary of the Andaman Sea is marked by islands and sea mounts, with straits or passages of variable depths that control the entry and exit of water to the Bay of Bengal. There is a drastic change in water depth over a short distance of Template:Convert, as one moves from the Bay of Bengal (around Template:Convert deep) to the vicinity of islands (up to Template:Convert depth) and further into the Andaman Sea. Water is exchanged between the Andaman Sea and the Bay of Bengal through the straits between the Andaman and Nicobar Islands. Out of these, the most important straits (in terms of width and depth) are Preparis Channel (PC), Ten Degree Channel (TDC), and Great Channel (GC). PC is the widest but shallowest (Template:Convert) of the three and separates south Myanmar from north Andaman. TDC is Template:Convert deep and lies between Little Andaman and Car Nicobar. GC is Template:Convert deep and separates Great Nicobar from Banda Aceh.

Ocean floor tectonics

[edit]
File:Neic slav fig72narrow.jpg
The Andaman Sea, showing tectonic plate boundaries
File:Tectonics Sumatra quake.gif
Tectonic setting of Sumatra earthquake (2004)

Running in a rough north–south line on the seabed of the Andaman Sea is the boundary between two tectonic plates, the Burma Plate and the Sunda Plate. These plates (or microplates) are believed to have formerly been part of the larger Eurasian Plate, but were formed when transform fault activity intensified as the Indian Plate began its substantive collision with the Eurasian continent. As a result, a back-arc basin center was created, which began to form the marginal basin which would become the Andaman Sea, the current stages of which commenced approximately 3–4 million years ago (Ma).<ref>Template:Cite web</ref>

The boundary between two major tectonic plates results in high seismic activity in the region (see List of earthquakes in Indonesia). Numerous earthquakes have been recorded, and at least six, in 1797, 1833, 1861, 2004, 2005, and 2007, had a magnitude of 8.4 or higher. On 26 December 2004, a large portion of the boundary between the Burma plate and the Indo-Australian plate slipped, causing the 2004 Indian Ocean earthquake. This megathrust earthquake had a magnitude of 9.3. Between Template:Convert of the boundary underwent thrust faulting and shifted by about Template:Convert, with the sea floor being uplifted several meters.<ref>Template:Cite journal</ref> This rise in the sea floor generated a massive tsunami with an estimated height of Template:Convert<ref>Tom Paulson (7 February 2005) New findings super-size our tsunami threat. 80-foot waves blasted Indonesia, scientists now say, Seattle Post-Intelligencer</ref> that killed approximately 280,000 people along the coast of the Indian Ocean.<ref>Indonesia quake toll jumps again, BBC, 25 January 2005</ref> The initial quake was followed by a series of aftershocks along the arc of the Andaman and Nicobar Islands. The entire event severely damaged the fishing infrastructure.<ref name=Panjarat>Template:Cite web</ref>Template:RP

Volcanic activity

[edit]
File:Ile Barren, 1995.jpg
Eruption of the Barren Island volcano in 1995. Andaman Islands (on top) are c. 90 km distant

Within the sea, to the east of the main Great Andaman island group, lies Barren Island, the only currently active volcano associated with the Indian subcontinent. This island volcano is Template:Convert in diameter and rises Template:Convert above sea level. Its recent activity resumed in 1991 after a quiet period of almost 200 years.<ref>D. Chandrasekharam, Jochen Bundschuh (2002) Geothermal energy resources for developing countries, Taylor & Francis Template:ISBN p. 408</ref> It is caused by the ongoing subduction of the India plate beneath the Andaman island arc, which forces magma to rise in this location of the Burma plate. The last eruption started on 13 May 2008 and continues.<ref>Barren Island Template:Webarchive, Smithsonian National Museum of Natural History</ref> The volcanic island of Narcondam, which lies further north, was also formed by this process. No records exist of its activity.<ref>Narcondum Template:Webarchive, Smithsonian National Museum of Natural History</ref>

Sediments to the Sea

[edit]

Collectively, the modern Ayeyarwady (Irrawaddy) and Thanlwin (Salween) rivers deliver >600 Mt/yr of sediment to the sea.<ref name="sciencedirect2020">Template:Cite journal</ref> Most recent studies show: 1) There is little modern sediment accumulating on the shelf immediately off the Ayeyarwady River mouths. In contrast, a major mud wedge with a distal depocenter, up to Template:Convert in thickness, has been deposited seaward in the Gulf of Martaban, extending to approximately Template:Convert water depth into the Martaban Depression. Further, 2) There is no evidence showing that modern sediment has accumulated or is transported into the Martaban Canyon; 3) a mud drape/blanket is wrapping around the narrow western Myanmar Shelf in the eastern Bay of Bengal. The thickness of the mud deposit is up to Template:Convert nearshore and gradually thins to the slope at Template:Convert water depth, and likely escapes into the deep Andaman Trench; 4) The estimated total amount of Holocene sediments deposited offshore is approximately Template:Convert. If we assume this has mainly accumulated since the middle Holocene highstand (~6000 yr BP) like other major deltas, the historical annual mean depositional flux on the shelf would be Template:Convert per year, which is equivalent to ~35% of the modern Ayeyarwady-Thanlwin rivers derived sediments; 5) Unlike other large river systems in Asia, such as the Yangtze and Mekong, this study indicates a bi-directional transport and depositional pattern controlled by the local currents that are influenced by tides, and seasonally varying monsoons winds and waves.<ref name="sciencedirect2020" />

Climate

[edit]
File:Monthly averaged ASCAT winds in ANDAMAN SEA for the year 2011, expressed in mps.png
Monthly averaged winds in the Andaman Sea for the year 2011, expressed in mps<ref name="indjst.org"/>

The climate of the Andaman Sea is determined by the monsoons of southeast Asia,<ref name="indjst.org"/> as the prevailing winds reverse with the start of either season. The region experiences north-easterlies with an average windspeed of Template:Convert from November to February. During these months, the western part of the domain experiences maximum wind intensity. It weakens by March–April and reverses to strong south-westerlies from May to September, with mean wind speeds touching Template:Convert in June, July, and August, distributed near-uniformly over the entire basin. Wind speeds plummet by October and switch back to north-easterlies from November.

File:Monthly averaged Ekman Pumping velocity (in m per day) for June and December.png
Monthly averaged Ekman pumping velocity (in m per day) for June and December<ref name="indjst.org"/>

Air temperature is stable over the year at Template:Convert in February and Template:Convert in August. Precipitation is as high as Template:Convert/year and mostly occurs in summer. Sea currents are south-easterly and easterly in winter and south-westerly and westerly in summer. The average surface water temperature is Template:Convert in February and Template:Convert in May. The water temperature is constant at Template:Convert at the depths of Template:Convert and below. Salinity is 31.5–32.5‰ (parts per thousand) in summer and 30.0–33.0‰ in winter in the southern part. In the northern part, it decreases to 20–25‰ due to the inflow of freshwater from the Irrawaddy River. Tides are semidiurnal with an amplitude of up to Template:Convert.<ref name=bse/>

The effect of wind stress on the ocean surface can be explained by wind stress curl. The net divergence of water in the ocean mixed layer results in Ekman pumping.<ref name="indjst.org"/> The contrast between the two seasons elicits a very strong negative pumping velocity of more than Template:Convert per day along the north coast of Indonesia from May to September (shown here, June). This may signify coastal downwelling in the summer. It is also observed that the region develops a weak but positive pumping velocity of less than Template:Convert per day at the mouth of GC in winter (here, December).

Current and wave fluid dynamics

[edit]
File:Monthly averaged OSCAR surface currents in January, April, June and October, expressed in cmps.png
Monthly averaged OSCAR surface currents in January, April, June, and October, expressed in cm/s<ref name="indjst.org"/>

Generally, currents are found to be stronger in the south than any other part of the basin.<ref name="indjst.org"/> An intense surface outflux through GC, of the order of Template:Convert, occurs during summers and winters. While this flow is directed westwards in winter, it is southwards along the west coast of Indonesia in summer. On the other hand, the TDC has strong surface influx in summer, which weakens by October. This is followed by a sturdy outflux in winter, which wanes by the month of April. Although the surface flow through PC is generally inward during summer monsoon, the preceding and succeeding months experience outflow (strong outflow in October, but weak outflow in April). During April and October, when the effects of local winds are minimal, Andaman Sea experiences the intensification of meridional surface currents in the poleward direction along the continental slope on the eastern side of the basin. This is characteristic of the propagation of Kelvin Waves.<ref name="indjst.org"/><ref name="kiransr1991.blogspot.in">Template:Cite web</ref>

File:Temporal variations of the basin Rainfall, River Influx and Sea Surface Height Anomaly, expressed in volume of water.png
Temporal variations of the basin rainfall, river influx, and sea surface height anomaly, expressed in volume of water<ref name="indjst.org"/>

It is observed that the water level rises in the basin between April and November with the maximum rate of piling up of water during April and October (marked by the steep slope of the curve).<ref name="indjst.org"/> The rise in sea surface height (SSH) is attributed to rainfall, fresh water influx from rivers, and inflow of water through the three major straits. The first two of these are quantifiable and are hence expressed in volumes of water for comparison. From this, the expected influx through the straits (= SSH anomaly – Rainfall – River Influx) could be deduced. A possible fourth factor, evaporative losses, is negligible in comparison. (Previous studies<ref>Baumgartner A, Riechel E. The World Water Balance, Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Runoff, Elsevier. 1975; 1−179pp</ref> show that the annual mean freshwater gain (precipitation minus evaporation) of the Andaman Sea is Template:Convert per year.) It is found that the SSH of the basin is primarily determined by the transport of water through the straits. The contributions from rainfall and rivers become substantial only during summer. Hence, a net inward flow occurs through the straits between April and November, followed by a net outward transport until March.<ref name="kiransr1991.blogspot.in"/>

File:Temporal variation of depth of 20 degree isotherm (95 E to 96 E averaged) in metres.png
Temporal variation of depth of 20-degree isotherm (95°E to 96°E averaged) in metres
File:Evolution of vorticity in Andaman sea.gif
Evolution of relative vorticity in Andaman Sea

The basin has a very high rate of transport of water through the straits in April and October. This is a period of equatorial Wyrtki jets, which hit the coast of Sumatra and reflect back as Rossby waves and coastal Kelvin waves. These Kelvin waves are guided along the eastern boundary of Indian Ocean, and a part of this signal propagates into the Andaman Sea. The northern coast of Sumatra is the first to be affected. The Template:Convert isotherm which deepens<ref name="indjst.org"/> during the same period is suggestive of the downwelling nature of Kelvin waves. The waves further propagate along the eastern boundary of the Andaman Sea, which is confirmed by the differential deepening of the 20-degree isotherm along longitudes 94°E and 97°E (averaged over latitudes 8°N and 13°N). These longitudes are chosen so that one represents the western part of the basin (94°E) and the other along the steep continental slope on the eastern side of the basin (97°E). It is observed that both these longitudes experience deepening of the isotherms in April and October, but the effect is more pronounced at 97°E (isotherms deepen by Template:Convert in April and Template:Convert in October). This is a concrete signature of downwelling in the basin and is definitely not forced<ref name="indjst.org"/> locally as the winds are weaker during this period. This confirms unequivocally that the sudden burst of water into the basin through the straits, the intensification of eastern boundary currents and the coincidental deepening of isotherms in April and October are the direct consequence of the propagation of downwelling Kelvin waves in the Andaman Sea, remotely forced by equatorial Wyrtki jets.<ref name="indjst.org"/> The evolution of vorticity in the basin is suggestive of strong shear in the flow during different times of the year, and further indicates the presence of low frequency geophysical waves (such as westward propagating Rossby waves) and other transient eddies.

Ecology

[edit]

Flora

[edit]
File:Andaman Islands, Neil, Mangrove trees.jpg
Mangrove trees on the coast, Neil Island, Andaman and Nicobar Islands

The coastal areas of the Andaman Sea are characterized by mangrove forests and seagrass meadows. Mangroves cover between more than Template:Convert of the Thai shores of Malay Peninsula whereas seagrass meadows occupy an area of Template:Convert.<ref name=Panjarat />Template:Rp Mangroves are largely responsible for the high productivity of the coastal waters – their roots trap soil and sediment and provide shelter from predators and nursery for fish and small aquatic organisms. Their body protects the shore from the wind and waves, and their detritus are a part of the aquatic food chain. A significant part of the Thai mangrove forests in the Andaman Sea was removed during the extensive brackish water shrimp farming in 1980sTemplate:Citation needed. Mangroves were also significantly damaged by the 2004 tsunami. They were partly replanted after that, but their area is still gradually decreasing due to human activities.<ref name=Panjarat />Template:RP

Other important sources of nutrients in the Andaman Sea are seagrass and the mud bottoms of lagoons and coastal areas. They also create a habitat or temporal shelter for many burrowing and benthic organisms. Many aquatic species migrate from and to seagrass either daily or at certain stages of their life cycle. The human activities which damage seagrass beds include waste water discharge from coastal industry, shrimp farms and other forms of coastal development, as well as trawling and the use of push nets and dragnets. The 2004 tsunami affected 3.5% of seagrass areas along the Andaman Sea via siltation and sand sedimentation and 1.5% suffered total habitat loss.<ref name=Panjarat />Template:RP

Fauna

[edit]
File:Phantom Bannerfish - Heniochus pleurotaenia.jpg
Phantom bannerfish (Heniochus pleurotaenia), Similan Islands, Thailand
File:Dugong Marsa Alam.jpg
Dugong
File:Phuket fauna.jpg
Starfish, Andaman Sea

The sea waters along the Malay Peninsula favor molluscan growth, and there are about 280 edible fish species belonging to 75 families. Of those, 232 species (69 families) are found in mangroves and 149 species (51 families) reside in seagrass; so 101 species are common to both habitats.<ref name=Panjarat />Template:RP The sea also hosts many vulnerable fauna species, including dugong (Dugong dugon), several dolphin species, such as Irrawaddy dolphin (Orcaella brevirostris) and four species of sea turtles: critically endangered leatherback turtle (Dermochelys coriacea) and hawksbill turtle (Eletmochelys imbricata) and threatened green turtle (Chelonia mydas) and olive ridley turtle (Lepidochelys olivacea). There are only about 150 dugongs in the Andaman Sea, scattered between Ranong and Satun Provinces. These species are sensitive to the degradation of seagrass meadows.<ref name=Panjarat />Template:RP

Coral reefs are estimated to occupy 73,364 rai (117 km2) in the Andaman Sea with only 6.4 percent in ideal condition.<ref>Template:Cite news</ref>

Human activities

[edit]

The sea has long been used for fishing and transportation of goods between the coastal countries.

Fishing

[edit]

Thailand alone harvested about Template:Convert of fish in 2005 and about Template:Convert in 2000.<ref>Template:Cite book</ref> Of those Template:Convert, Template:Convert are accounted for by trawling (1,017 vessels), Template:Convert by purse seine (415 vessels), and about Template:Convert by gillnets. Of Thailand's total marine catch, 41% is caught in the Gulf of Thailand and 19% in the Andaman Sea. 40% is caught in waters outside Thailand's EEZ.<ref name=GP-2012>Template:Cite book</ref>

Production numbers are significantly smaller for Malaysia and are comparable, or higher, for Myanmar.<ref>Template:Cite book</ref> Competition for fish resulted in numerous conflicts between Myanmar and Thailand. In 1998 and 1999, they resulted in fatalities on both sides and nearly escalated into a military conflict. In both cases, the Thai navy intervened when Burmese vessels tried to intercept Thai fishing boats in the contested sea areas, and Thai fighter aircraft were thought to be deployed by the National Security Council. Thai fishing boats were also frequently confronted by the Malaysian navy to the extent that the Thai government had to caution its own fishers against fishing without license in foreign waters.<ref>Template:Cite book</ref>

The 2004 marine production in Thailand was composed of: pelagic fish 33 percent, demersal fish 18 percent, cephalopod 7.5 percent, crustaceans 4.5 percent, trash fish 30 percent and others 7 percent.<ref name=Panjarat />Template:RP Trash fish refers to non-edible species, edible species of low commercial value and juveniles, which are released to the sea.<ref name=Panjarat />Template:RP Pelagic fishes were distributed between anchovies (Stolephorus spp., 19 percent), Indo-Pacific mackerel (Rastrelliger brachysoma, 18 percent), sardinellas (Sardinellars spp., 14 percent), scad (11 percent), longtail tuna (Thunnus tonggol, 9 percent), eastern little tuna (Euthynnus affinis, 6 percent), trevallies (6 percent), bigeye scad (5 percent), Indian mackerel (Rastrelliger kanagurta, 4 percent), king mackerel (Scomberomorus cavalla, 3 percent), torpedo scad (Megalaspis cordyla , 2 percent), wolf herrings (1 percent), and others (2 percent).<ref name=Panjarat />Template:RP Demersal fish production was dominated by purple-spotted bigeye (Priacanthus tayenus), threadfin bream (Nemipterus hexodon), brushtooth lizardfish (Saurida undosquamis), slender lizardfish (Saurida elongata) and Jinga shrimp (Metapenaeus affinis). Most species are overfished since the 1970s–1990s, except for Spanish mackerel (Scomberomorus commersoni), carangidae and torpedo scad (Meggalaspis spp.). The overall overfishing rate was 333 percent for pelagic and 245 percent for demersal species in 1991.<ref name=Panjarat />Template:RP Cephalopods are divided into squid, cuttlefish and molluscs, where squid and cuttlefish in Thai waters consists of 10 families, 17 genera and over 30 species. The main mollusk species captured in the Andaman Sea are scallop, blood cockle (Anadara granosa) and short-necked clam. Their collection requires bottom dredge gears, which damage the sea floor and the gears themselves and are becoming unpopular. So, the mollusk production has decreased from Template:Convert in 1999 to 318 tonnes in 2004. While crustaceans composed only 4.5 percent of the total marine products in 2004 by volume, they accounted for 21 percent of the total value. They were dominated by banana prawn, tiger prawn, king prawn, school prawn, bay lobster (Thenus orientalis), mantis shrimp, swimming crabs and mud crabs. The total catch in 2004 was Template:Convert for squid and cuttlefish and Template:Convert for crustaceans.<ref name=Panjarat />Template:RP

Mineral resources

[edit]
File:Andaman Sea, Andaman Islands.jpg
Andaman Sea off Havelock Island

The sea's mineral resources include tin deposits off the coasts of Malaysia and Thailand. Major ports are Port Blair in India; Dawei, Mawlamyine and Yangon in Myanmar; Ranong port in Thailand; George Town and Penang in Malaysia; and Belawan in Indonesia.<ref name=brit/>

Tourism

[edit]

The Andaman Sea, particularly the western coast of the Malay Peninsula, and the Andaman and Nicobar Islands of India and Myanmar are rich in coral reefs and offshore islands with spectacular topography. Despite having been damaged by the 2004 Sumatra earthquake and tsunami, they remain popular tourist destinations.<ref>Template:Cite book</ref> The nearby coast also has numerous marine national parks – 16 only in Thailand, and four of them are candidates for inclusion into UNESCO World Heritage Sites.<ref name=Panjarat />Template:RP

See also

[edit]

References

[edit]

Template:Reflist

[edit]

Template:List of Indonesian seas Template:List of seas Template:Authority control