Catalan's constant: Difference between revisions
imported>Meyeds m i added a photo , visualisation of the constant |
(No difference)
|
Latest revision as of 03:23, 5 May 2025
Template:Short description Template:Distinguish Template:Infobox non-integer number
Template:CS1 config In mathematics, Catalan's constant Template:Mvar, is the alternating sum of the reciprocals of the odd square numbers, being defined by:
- <math>G = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} - \cdots,</math>
where Template:Mvar is the Dirichlet beta function. Its numerical value<ref>Template:Cite book</ref> is approximately Template:OEIS
Catalan's constant was named after Eugène Charles Catalan, who found quickly-converging series for its calculation and published a memoir on it in 1865.<ref>Template:Citation</ref><ref>Template:Citation</ref>
Uses
[edit]In low-dimensional topology, Catalan's constant is 1/4 of the volume of an ideal hyperbolic octahedron, and therefore 1/4 of the hyperbolic volume of the complement of the Whitehead link.<ref>Template:Citation.</ref> It is 1/8 of the volume of the complement of the Borromean rings.<ref>Template:Citation</ref>
In combinatorics and statistical mechanics, it arises in connection with counting domino tilings,<ref>Template:Citation</ref> spanning trees,<ref>Template:Citation</ref> and Hamiltonian cycles of grid graphs.<ref>Template:Citation</ref>
In number theory, Catalan's constant appears in a conjectured formula for the asymptotic number of primes of the form <math>n^2+1</math> according to Hardy and Littlewood's Conjecture F. However, it is an unsolved problem (one of Landau's problems) whether there are even infinitely many primes of this form.<ref>Template:Citation</ref>
Catalan's constant also appears in the calculation of the mass distribution of spiral galaxies.<ref>Template:Citation</ref><ref>Template:Citation</ref>
Properties
[edit]Template:Unsolved It is not known whether Template:Mvar is irrational, let alone transcendental.<ref>Template:Citation.</ref> Template:Mvar has been called "arguably the most basic constant whose irrationality and transcendence (though strongly suspected) remain unproven".<ref>Template:Citation</ref>
There exist however partial results. It is known that infinitely many of the numbers β(2n) are irrational, where β(s) is the Dirichlet beta function.<ref>Template:Cite journal</ref> In particular at least one of β(2), β(4), β(6), β(8), β(10) and β(12) must be irrational, where β(2) is Catalan's constant.<ref>Template:Cite journal</ref> These results by Wadim Zudilin and Tanguy Rivoal are related to similar ones given for the odd zeta constants ζ(2n+1).
Catalan's constant is known to be an algebraic period, which follows from some of the double integrals given below.
Series representations
[edit]Catalan's constant appears in the evaluation of several rational series including:<ref name=":0">Template:Cite web</ref><math display="block">\frac{\pi^2}{16}+\frac G2 = \sum_{n=0}^\infty \frac{1}{(4n+1)^2}.</math><math display="block">\frac{\pi^2}{16}-\frac G2 = \sum_{n=0}^\infty \frac{1}{(4n+3)^2}.</math> The following two formulas involve quickly converging series, and are thus appropriate for numerical computation: <math display="block">\begin{align} G & = 3 \sum_{n=0}^\infty \frac{1}{2^{4n}} \left(-\frac{1}{2(8n+2)^2}+\frac{1}{2^2(8n+3)^2}-\frac{1}{2^3(8n+5)^2}+\frac{1}{2^3(8n+6)^2}-\frac{1}{2^4(8n+7)^2}+\frac{1}{2(8n+1)^2}\right) \\ & \qquad -2 \sum_{n=0}^\infty \frac{1}{2^{12n}} \left(\frac{1}{2^4(8n+2)^2}+\frac{1}{2^6(8n+3)^2}-\frac{1}{2^9(8n+5)^2}-\frac{1}{2^{10} (8n+6)^2}-\frac{1}{2^{12} (8n+7)^2}+\frac{1}{2^3(8n+1)^2}\right) \end{align}</math> and <math display="block">G = \frac{\pi}{8}\log\left(2 + \sqrt{3}\right) + \frac{3}{8}\sum_{n=0}^\infty \frac{1}{(2n+1)^2 \binom{2n}{n}}.</math>
The theoretical foundations for such series are given by Broadhurst, for the first formula,<ref>Template:Cite arXiv</ref> and Ramanujan, for the second formula.<ref>Template:Cite book</ref> The algorithms for fast evaluation of the Catalan constant were constructed by E. Karatsuba.<ref>Template:Cite journal</ref><ref>Template:Cite book</ref> Using these series, calculating Catalan's constant is now about as fast as calculating Apéry's constant, <math>\zeta(3)</math>.<ref name="Yee_formulas" />
Other quickly converging series, due to Guillera and Pilehrood and employed by the y-cruncher software, include:<ref name="Yee_formulas">Template:Cite web</ref>
- <math>G = \frac{1}{2}\sum_{k=0}^{\infty }\frac{(-8)^{k}(3k+2)}{(2k+1)^{3}{\binom{2k}{k}}^{3}}</math>
- <math>G = \frac{1}{64}\sum_{k=1}^{\infty }\frac{256^{k}(580k^2-184k+15)}{k^3(2k-1)\binom{6k}{3k}\binom{6k}{4k}\binom{4k}{2k}}</math>
- <math>G = -\frac{1}{1024}\sum_{k=1}^{\infty }\frac{(-4096)^k(45136k^4-57184k^3+21240k^2-3160k+165)}{k^3(2k-1)^3}\left( \frac{(2k)!^6(3k)!^3}{k!^3(6k)!^3} \right)</math>
All of these series have time complexity <math>O(n\log(n)^3)</math>.<ref name="Yee_formulas"/>
Integral identities
[edit]As Seán Stewart writes, "There is a rich and seemingly endless source of definite integrals that can be equated to or expressed in terms of Catalan's constant."<ref>Template:Citation</ref> Some of these expressions include: <math display="block">\begin{align} G &= -\frac{1}{\pi i}\int_{0}^{\frac{\pi}{2}} \ln\ln \tan x \ln \tan x \,dx \\[3pt] G &= \iint_{[0,1]^2} \! \frac{1}{1+x^2 y^2} \,dx\, dy \\[3pt] G &= \int_0^1\int_0^{1-x} \frac{1}{1 -x^2-y^2} \,dy\,dx \\[3pt] G &= \int_1^\infty \frac{\ln t}{1 + t^2} \,dt \\[3pt] G &= -\int_0^1 \frac{\ln t}{1 + t^2} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\frac{\pi}{2} \frac{t}{\sin t} \,dt \\[3pt] G &= \int_0^\frac{\pi}{4} \ln \cot t \,dt \\[3pt] G &= \frac{1}{2} \int_0^\frac{\pi}{2} \ln \left( \sec t +\tan t \right) \,dt \\[3pt] G &= \int_0^1 \frac{\arccos t}{\sqrt{1+t^2}} \,dt \\[3pt] G &= \int_0^1 \frac{\operatorname{arcsinh} t}{\sqrt{1-t^2}} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{\operatorname{arctan} t}{t\sqrt{1+t^2}} \,dt \\[3pt] G &= \frac{1}{2} \int_0^1 \frac{\operatorname{arctanh} t}{\sqrt{1-t^2}} \,dt \\[3pt] G &= \int_0^\infty \arccot e^{t} \,dt \\[3pt] G &= \frac{1}{4} \int_0^{{\pi^2}/{4}} \csc \sqrt{t} \,dt \\[3pt] G &= \frac{1}{16} \left(\pi^2 + 4\int_1^\infty \arccsc^2 t \,dt\right) \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{t}{\cosh t} \,dt \\[3pt] G &= \frac{\pi}{2} \int_1^\infty \frac{\left(t^4-6t^2+1\right)\ln\ln t}{\left(1+t^2\right)^3} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{\arcsin \left(\sin t\right)}{t} \,dt \\[3pt] G &= 1 + \lim_{\alpha\to{1^-}}\!\left\{\int_0^{\alpha}\!\frac{\left(1+6t^2+t^4\right)\arctan{t}}{t\left(1-t^2\right)^2}\, dt + 2\operatorname{artanh}{\alpha} - \frac{\pi\alpha}{1-\alpha^2} \right\} \\[3pt] G &= 1 - \frac18 \iint_{\R^2}\!\!\frac{x\sin\left(2xy/\pi\right)}{\,\left(x^2+\pi^2\right)\cosh x\sinh y\,} \,dx\,dy \\[3pt] G &= \int_{0}^{\infty}\int_{0}^{\infty}\frac{\sqrt[4]{x} \left(\sqrt{x} \sqrt{y}-1\right)}{(x+1)^2 \sqrt[4]{y} (y+1)^2 \log (x y)}dxdy \end{align}</math>
where the last three formulas are related to Malmsten's integrals.<ref>Template:Cite journal</ref>
If Template:Math is the complete elliptic integral of the first kind, as a function of the elliptic modulus Template:Math, then <math display="block"> G = \tfrac{1}{2} \int_0^1 \mathrm{K}(k)\,dk </math>
If Template:Math is the complete elliptic integral of the second kind, as a function of the elliptic modulus Template:Math, then <math display="block"> G = -\tfrac{1}{2}+\int_0^1 \mathrm{E}(k)\,dk </math>
With the gamma function Template:Math <math display="block">\begin{align} G &= \frac{\pi}{4} \int_0^1 \Gamma\left(1+\frac{x}{2}\right)\Gamma\left(1-\frac{x}{2}\right)\,dx \\ &= \frac{\pi}{2} \int_0^\frac12\Gamma(1+y)\Gamma(1-y)\,dy \end{align}</math>
The integral <math display="block"> G = \operatorname{Ti}_2(1)=\int_0^1 \frac{\arctan t}{t}\,dt </math> is a known special function, called the inverse tangent integral, and was extensively studied by Srinivasa Ramanujan.
Relation to special functions
[edit]Template:Mvar appears in values of the second polygamma function, also called the trigamma function, at fractional arguments:<ref name=":0" />
<math display="block">\begin{align} \psi_1 \left(\tfrac14\right) &= \pi^2 + 8G \\ \psi_1 \left(\tfrac34\right) &= \pi^2 - 8G. \end{align}</math>
Simon Plouffe gives an infinite collection of identities between the trigamma function, Template:Pi2 and Catalan's constant; these are expressible as paths on a graph.
Catalan's constant occurs frequently in relation to the Clausen function, the inverse tangent integral, the inverse sine integral, the [[Barnes G-function|Barnes Template:Mvar-function]], as well as integrals and series summable in terms of the aforementioned functions.
As a particular example, by first expressing the inverse tangent integral in its closed form – in terms of Clausen functions – and then expressing those Clausen functions in terms of the Barnes Template:Mvar-function, the following expression is obtained (see Clausen function for more):
<math display="block">G=4\pi \log\left( \frac{ G\left(\frac{3}{8}\right) G\left(\frac{7}{8}\right) }{ G\left(\frac{1}{8}\right) G\left(\frac{5}{8}\right) } \right) +4 \pi \log \left( \frac{ \Gamma\left(\frac{3}{8}\right) }{ \Gamma\left(\frac{1}{8}\right) } \right) +\frac{\pi}{2} \log \left( \frac{1+\sqrt{2} }{2 \left(2-\sqrt{2}\right)} \right).</math>
If one defines the Lerch transcendent Template:Math by <math display="block">\Phi(z, s, \alpha) = \sum_{n=0}^\infty \frac { z^n} {(n+\alpha)^s},</math> then <math display="block"> G = \tfrac{1}{4}\Phi\left(-1, 2, \tfrac{1}{2}\right).</math>
Continued fraction
[edit]Template:Mvar can be expressed in the following form:<ref>Template:Cite journal</ref>
- <math>G=\cfrac{1}{1+\cfrac{1^4}{8+\cfrac{3^4}{16+\cfrac{5^4}{24+\cfrac{7^4}{32+\cfrac{9^4}{40+\ddots}}}}}}</math>
The simple continued fraction is given by:<ref>Template:Cite web</ref>
- <math>G=\cfrac{1}{1+\cfrac{1}{10+\cfrac{1}{1+\cfrac{1}{8+\cfrac{1}{1+\cfrac{1}{88+\ddots}}}}}}</math>
This continued fraction would have infinite terms if and only if <math>G</math> is irrational, which is still unresolved.
Known digits
[edit]The number of known digits of Catalan's constant Template:Mvar has increased dramatically during the last decades. This is due both to the increase of performance of computers as well as to algorithmic improvements.<ref name=Gourdon>Template:Cite web</ref>
Date | Decimal digits | Computation performed by |
---|---|---|
1832 | 16 | Thomas Clausen |
1858 | 19 | Carl Johan Danielsson Hill |
1864 | 14 | Eugène Charles Catalan |
1877 | 20 | James W. L. Glaisher |
1913 | 32 | James W. L. Glaisher |
1990 | Template:Val | Greg J. Fee |
1996 | Template:Val | Greg J. Fee |
August 14, 1996 | Template:Val | Greg J. Fee & Simon Plouffe |
September 29, 1996 | Template:Val | Thomas Papanikolaou |
1996 | Template:Val | Thomas Papanikolaou |
1997 | Template:Val | Patrick Demichel |
January 4, 1998 | Template:Val | Xavier Gourdon |
2001 | Template:Val | Xavier Gourdon & Pascal Sebah |
2002 | Template:Val | Xavier Gourdon & Pascal Sebah |
October 2006 | Template:Val | Shigeru Kondo & Steve Pagliarulo<ref>Template:Cite web</ref> |
August 2008 | Template:Val | Shigeru Kondo & Steve Pagliarulo<ref name=Gourdon /> |
January 31, 2009 | Template:Val | Alexander J. Yee & Raymond Chan<ref name=yee_chan>Template:Cite web</ref> |
April 16, 2009 | Template:Val | Alexander J. Yee & Raymond Chan<ref name=yee_chan/> |
June 7, 2015 | Template:Val | Robert J. Setti<ref name=setti>Template:Cite web</ref> |
April 12, 2016 | Template:Val | Ron Watkins<ref name=setti/> |
February 16, 2019 | Template:Val | Tizian Hanselmann<ref name=setti/> |
March 29, 2019 | Template:Val | Mike A & Ian Cutress<ref name=setti/> |
July 16, 2019 | Template:Val | Seungmin Kim<ref name=yee>Template:Cite web</ref><ref name=kim>Template:Cite web</ref> |
September 6, 2020 | Template:Val | Andrew Sun<ref name=yrecord>Template:Cite web</ref> |
March 9, 2022 | Template:Val | Seungmin Kim<ref name=yrecord/> |
See also
[edit]- Gieseking manifold
- List of mathematical constants
- Mathematical constant
- Particular values of Riemann zeta function
References
[edit]Further reading
[edit]External links
[edit]- Template:Cite web
- Template:Cite web (Provides over one hundred different identities).
- Template:Cite web (Provides a graphical interpretation of the relations)
- Template:Cite book (Provides the first 300,000 digits of Catalan's constant)
- Template:Citation
- Template:Cite web
- Template:Cite web
- Template:MathWorld
- Template:WolframFunctionsSite
- Template:Springer