Jump to content

Linear polarization: Difference between revisions

From Niidae Wiki
imported>Tapeworms27
m Fix magnitude bars latex in equation
 
(No difference)

Latest revision as of 01:36, 23 June 2023

Template:Short description Template:Use American English Template:Use mdy dates Template:More footnotes

File:Linear polarization schematic.png
Diagram of the electric field of a light wave (blue), linear-polarized along a plane (purple line), and consisting of two orthogonal, in-phase components (red and green waves)

In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. The term linear polarization (French: polarisation rectiligne) was coined by Augustin-Jean Fresnel in 1822.<ref name=fresnel-1822z>A. Fresnel, "Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l'axe", read 9 December 1822; printed in H. de Senarmont, E. Verdet, and L. Fresnel (eds.), Oeuvres complètes d'Augustin Fresnel, vol. 1 (1866), pp.Template:Nnbsp731–51; translated as "Memoir on the double refraction that light rays undergo in traversing the needles of quartz in the directions parallel to the axis", Template:Zenodo, 2021 (open access); §9.</ref> See polarization and plane of polarization for more information.

The orientation of a linearly polarized electromagnetic wave is defined by the direction of the electric field vector.<ref name="Shapira,">Template:Cite book</ref> For example, if the electric field vector is vertical (alternately up and down as the wave travels) the radiation is said to be vertically polarized.

Mathematical description

[edit]

The classical sinusoidal plane wave solution of the electromagnetic wave equation for the electric and magnetic fields is (cgs units)

<math> \mathbf{E} ( \mathbf{r} , t ) = |\mathbf{E}| \mathrm{Re} \left \{ |\psi\rangle \exp \left [ i \left ( kz-\omega t \right ) \right ] \right \} </math>
<math> \mathbf{B} ( \mathbf{r} , t ) = \hat { \mathbf{z} } \times \mathbf{E} ( \mathbf{r} , t )/c </math>

for the magnetic field, where k is the wavenumber,

<math> \omega_{ }^{ } = c k</math>

is the angular frequency of the wave, and <math> c </math> is the speed of light.

Here <math> \mid\mathbf{E}\mid </math> is the amplitude of the field and

<math> |\psi\rangle \ \stackrel{\mathrm{def}}{=}\ \begin{pmatrix} \psi_x \\ \psi_y \end{pmatrix} = \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right ) \\ \sin\theta \exp \left ( i \alpha_y \right ) \end{pmatrix} </math>

is the Jones vector in the x-y plane.

The wave is linearly polarized when the phase angles <math> \alpha_x^{ } , \alpha_y </math> are equal,

<math> \alpha_x = \alpha_y \ \stackrel{\mathrm{def}}{=}\ \alpha </math>.

This represents a wave polarized at an angle <math> \theta </math> with respect to the x axis. In that case, the Jones vector can be written

<math> |\psi\rangle = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} \exp \left ( i \alpha \right ) </math>.

The state vectors for linear polarization in x or y are special cases of this state vector.

If unit vectors are defined such that

<math> |x\rangle \ \stackrel{\mathrm{def}}{=}\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} </math>

and

<math> |y\rangle \ \stackrel{\mathrm{def}}{=}\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} </math>

then the polarization state can be written in the "x-y basis" as

<math> |\psi\rangle = \cos\theta \exp \left ( i \alpha \right ) |x\rangle + \sin\theta \exp \left ( i \alpha \right ) |y\rangle = \psi_x |x\rangle + \psi_y |y\rangle </math>.

See also

[edit]

References

[edit]

Template:Reflist

[edit]

Template:FS1037C

ja:直線偏光 pl:Polaryzacja_fali#Polaryzacja_liniowa