Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Vascular plant
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Clade of plants with xylem and phloem}} {{Automatic taxobox | image = Athyrium_filix-femina_RF.jpg | image_caption = [[Common lady-fern]], a non-seed-bearing plant | image2 = Young lemon basil plant (Ocimum × africanum).jpg | image2_caption = [[Lemon basil]], a [[Spermatophyte|seed-bearing]] plant | fossil_range = {{fossil range|425|0|[[Silurian]]–Present, 425–0 [[Megaannum|Ma]]|ref=<ref name="Edwards-1980">{{cite journal |author=D. Edwards |year=1980 |title=Records of ''Cooksonia''-type sporangia from late Wenlock strata in Ireland |journal=Nature |volume=287 |pages=41–42 |doi=10.1038/287041a0 |last2=Feehan |first2=J. |issue=5777 |bibcode=1980Natur.287...41E }}</ref><ref name="Parfrey-2011">{{cite Q|Q24614721}}</ref>}} | display_parents = 2 | taxon = Tracheophytes/Plantae | authority = Sinnott, 1935<ref>Sinnott, E. W. 1935. ''Botany. Principles and Problems'', 3d edition. McGraw-Hill, New York.</ref> ex [[Thomas Cavalier-Smith|Cavalier-Smith]], 1998<ref name="Cavalier-Smith-1998">{{cite journal |last1=Cavalier-Smith |first1=T. |title=A revised six-kingdom system of life |journal=Biological Reviews |date=August 1998 |volume=73 |issue=3 |pages=203–266 |doi=10.1111/j.1469-185X.1998.tb00030.x |pmid=9809012 }}</ref> | subdivision_ranks = '''Divisions'''<br /><small>† Extinct</small> | subdivision = *Non-seed bearing plants ** †''[[Cooksonia]]'' ** †[[Rhyniophyte|Rhyniophyta]] ** †[[Zosterophyll]]ophyta ** [[Lycopodiopsida|Lycopodiophyta]] ** †[[Trimerophytophyta]] ** [[Fern|Polypodiophyta]] ** †[[Progymnospermophyta]] * Superdivision [[Spermatophyta]] ** †[[Pteridospermatophyta]] ** [[Pinophyta]] ** [[Cycadophyta]] ** [[Ginkgophyta]] ** [[Gnetophyta]] ** [[Flowering plant|Magnoliophyta]] (angiosperms) ** †[[Bennettitales]] }} '''Vascular plants''' ({{etymology|la|{{wikt-lang|la|vasculum}}|duct}}), also called '''tracheophytes''' ({{IPAc-en|UK|ˈ|t|r|æ|k|iː||ə|ˌ|f|aɪ|t|s}},<ref>{{Cite OED|tracheophyte}}</ref> {{IPAc-en|US|ˈ|t|r|eɪ|k|iː||ə|ˌ|f|aɪ|t|s}})<ref>{{Cite Merriam-Webster|tracheophyte}}</ref> or collectively '''tracheophyta''' ({{IPAc-en|ˌ|t|r|eɪ||k|iː|ˈ|ɒ|f|ɪ|t|ə}};<ref>{{Cite Merriam-Webster|Tracheophyta}}</ref><ref>{{Cite web |title=vascular plant {{!}} Definition, Characteristics, Taxonomy, Examples, & Facts |url=https://www.britannica.com/plant/tracheophyte |access-date=2022-03-22 |website=Britannica }}</ref><ref name="Simpson-2010">{{cite book |doi=10.1016/B978-0-12-374380-0.50004-X |chapter=Evolution and Diversity of Vascular Plants |title=Plant Systematics |date=2010 |last1=Simpson |first1=Michael G. |pages=73–128 |isbn=978-0-12-374380-0 }}</ref> {{etymology|grc|''{{wikt-lang|grc|τραχεῖα ἀρτηρία}}'' ({{grc-transl|τραχεῖα ἀρτηρία}})|windpipe||''{{wikt-lang|grc|φυτά}}'' ({{grc-transl|φυτά}})|plants}}),<ref name="Simpson-2010" /> are [[plants]] that have [[lignin|lignified]] tissues (the [[xylem]]) for conducting water and minerals throughout the plant. They also have a specialized non-lignified [[Tissue (biology)|tissue]] (the [[phloem]]) to conduct products of [[photosynthesis]]. The group includes most [[embryophyte|land plants]] ({{circa|300,000}} accepted known species)<ref name="Christenhusz-2016">{{cite journal |last1=Christenhusz |first1=M. J. M. |last2=Byng |first2=J. W. |year=2016 |title=The number of known plants species in the world and its annual increase |journal=[[Phytotaxa]] |volume=261 |pages=201–217 |doi=10.11646/phytotaxa.261.3.1 |issue=3 |doi-access=free}}</ref> excluding [[moss]]es. Vascular plants include the [[clubmoss]]es, [[Equisetum|horsetails]], [[fern]]s, [[gymnosperm]]s (including [[conifer]]s), and angiosperms ([[flowering plant]]s). They are contrasted with [[nonvascular plant]]s such as [[mosses]] and [[green algae]]. Scientific names for the vascular plants group include Tracheophyta,<ref>{{cite book |last1=Abercrombie |first1=Michael |last2=Hickman |first2=C. J. |last3=Johnson |first3=M. L. |date=1966 |title=A Dictionary of Biology |publisher=Penguin Books}}</ref><ref name="Cavalier-Smith-1998"/>{{rp|251}} Tracheobionta<ref name="ITIS">{{cite web |url=https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=564824|title=ITIS Standard Report Page: Tracheobionta|access-date=September 20, 2013}}</ref> and [[Equisetopsida sensu lato|Equisetopsida ''sensu lato'']]. Some early land plants (the [[rhyniophyte]]s) had less developed vascular tissue; the term '''eutracheophyte''' has been used for all other vascular plants, including all living ones. Historically, vascular plants were known as "'''higher plants'''", as it was believed that they were further [[Evolution|evolved]] than other plants due to being more complex organisms. However, this is an antiquated remnant of the obsolete [[Great chain of being|scala naturae]], and the term is generally considered to be unscientific.<ref>{{Cite web |title=Vascular Plants: Definition, Classification, Characteristics & Examples |url=https://sciencing.com/vascular-plants-13719225.html |access-date=2022-03-22 |website=Sciencing }}</ref> ==Characteristics== Botanists define vascular plants by three primary characteristics: # Vascular plants have [[vascular tissue]]s which distribute resources through the plant. Two kinds of vascular tissue occur in plants: [[xylem]] and [[phloem]]. Phloem and xylem are closely associated with one another and are typically located immediately adjacent to each other in the plant. The combination of one xylem and one phloem strand adjacent to each other is known as a [[vascular bundle]].<ref>{{cite web |url=https://basicbiology.net/plants/physiology/xylem-phloem |title=Xylem and Phloem |website=Basic Biology |date=26 August 2020}}</ref> The [[evolution]] of vascular tissue in plants allowed them to evolve to larger sizes than [[non-vascular plant]]s, which lack these specialized conducting tissues and are thereby restricted to relatively small sizes. # In vascular plants, the principal [[alternation of generations|generation or phase]] is the ''[[sporophyte]]'', which produces [[spore]]s and is [[diploid]] (having two sets of [[chromosomes]] per cell). (By contrast, the principal generation phase in non-vascular plants is the ''[[gametophyte]]'', which produces [[Germ cell|gametes]] and is [[haploid]], with one set of chromosomes per cell.) # Vascular plants have true roots, leaves, and stems, even if some groups have secondarily lost one or more of these traits. Cavalier-Smith (1998) treated the Tracheophyta as a [[phylum]] or botanical division encompassing two of these characteristics defined by the Latin phrase "facies diploida xylem et phloem instructa" (diploid phase with xylem and phloem).<ref name="Cavalier-Smith-1998"/>{{rp|251}} One possible mechanism for the presumed evolution from emphasis on haploid generation to emphasis on diploid generation is the greater efficiency in spore dispersal with more complex diploid structures. Elaboration of the spore stalk enabled the production of more spores and the development of the ability to release them higher and to broadcast them further. Such developments may include more photosynthetic area for the spore-bearing structure, the ability to grow independent roots, woody structure for support, and more branching.{{citation needed|reason=several points in this paragraph are conjectural and need WP:RS|date=February 2016}} [[Sexual reproduction]] in vascular land plants involves the process of meiosis. Meiosis provides a direct [[DNA repair]] capability for dealing with [[DNA damage (naturally occurring)|DNA damages]], including oxidative DNA damages, in [[germline]] reproductive tissues.<ref>{{cite journal |vauthors=Hörandl E |title=Apomixis and the paradox of sex in plants |journal=Ann Bot |volume=134 |issue=1 |pages=1–18 |date=June 2024 |pmid=38497809 |doi=10.1093/aob/mcae044 |url=|doi-access=free |pmc=11161571 }}</ref> ==Phylogeny== A proposed phylogeny of the vascular plants after Kenrick and Crane 1997<ref name="Kenrick-1997">{{cite book|last1=Kenrick |first1=Paul |first2=Peter R. |last2=Crane |date=1997 |title=The Origin and Early Diversification of Land Plants: A Cladistic Study |location=Washington, D.C. |publisher=Smithsonian Institution Press |isbn=1-56098-730-8}}</ref> is as follows, with modification to the gymnosperms from Christenhusz ''et al.'' (2011a),<ref name="Christenhusz-2011a">{{cite journal |last1=Christenhusz |first1=Maarten J. M. |last2=Reveal |first2=James L. |last3=Farjon |first3=Aljos |last4=Gardner |first4=Martin F. |last5=Mill |first5=R.R. |last6=Chase |first6=Mark W. |year=2011 |title=A new classification and linear sequence of extant gymnosperms |journal=Phytotaxa |volume=19 |pages=55–70 |doi=10.11646/phytotaxa.19.1.3 }}</ref> Pteridophyta from Smith ''et al.''<ref name="Smith-2006">{{cite journal |last1=Smith |first1=Alan R. |last2=Pryer |first2=Kathleen M. |last3=Schuettpelz |first3=E. |last4=Korall |first4=P. |last5=Schneider |first5=H. |last6=Wolf |first6=Paul G. |year=2006 |title=A classification for extant ferns |journal=Taxon |volume=55 |issue=3 |pages=705–731 |doi=10.2307/25065646 |jstor=25065646 }}</ref> and lycophytes and ferns by Christenhusz ''et al.'' (2011b) <ref name="Christenhusz-2011b">{{cite journal |last1=Christenhusz |first1=Maarten J. M. |last2=Zhang|first2=Xian-Chun |last3=Schneider |first3=Harald |year=2011 |title=A linear sequence of extant families and genera of lycophytes and ferns |journal=Phytotaxa |volume=19 |pages=7–54 |doi=10.11646/phytotaxa.19.1.2 }}</ref> The cladogram distinguishes the [[rhyniophyte]]s from the "true" tracheophytes, the eutracheophytes.<ref name="Kenrick-1997"/> {{Barlabel|size=17|at1=13.5|bar1=green|style=font-size:75%;line-height:75%|label1=[[Gymnosperms]]|cladogram={{clade |label1=[[Polysporangiophyte|Polysporangiates]] |1={{clade |1=†''[[Aglaophyton]]'' |2=†[[Horneophytopsida]] |3={{clade |label1='''Tracheophyta''' |1={{clade |1=†[[Rhyniophyta]] |label2=Eutracheophytes |2={{clade |label1=Lycophytina |1={{clade |1='''[[Lycopodiophyta]]''' |2=†[[Zosterophyllophyta]] }} |label2=[[Euphyllophytina]] |2={{clade |label1='''[[Fern|Pteridophyta]]''' |1={{clade |1={{clade |1=†[[Cladoxylopsida]] |2=[[Equisetopsida]] (horsetails) |3=[[Marattiopsida]] |4=[[Psilotopsida]] (whisk ferns and adders'-tongues) |5=[[Pteridopsida]] (true ferns) }} }} |label2=Lignophytes |2={{clade |1=†[[Progymnospermophyta]] |label2='''[[Spermatophyte]]s''' |2={{clade |1=[[Cycadophyta]] (cycads)|barbegin1=green |2=[[Ginkgophyta]] (ginkgo)|bar2=green |3=[[Gnetophyta]]|bar3=green |4=[[Pinophyta]] (conifers)|barend4=green |5=[[Magnoliophyta]] (flowering plants) |6=†[[Pteridospermatophyta]] (seed ferns) }} }} }} }} }} }} }} }} }} This phylogeny is supported by several molecular studies.<ref name="Smith-2006"/><ref>{{cite journal |last1=Pryer |first1=K. M. |last2=Schneider |first2=H. |year=2001 |title=Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants |journal=Nature |volume=409 |issue=6820 |pages=618–22 |doi=10.1038/35054555 |pmid=11214320 |last3=Smith |first3=A. R. |last4=Cranfill |first4=R. |last5=Wolf |first5=P. G. |last6=Hunt |first6=J. S. |last7=Sipes |first7=S. D. |bibcode=2001Natur.409..618S }}</ref><ref>{{cite journal |last1=Pryer |first1=K. M. |last2=Schuettpelz |first2=E. |last3=Wolf |first3=P. G. |last4=Schneider |first4=H. |last5=Smith |first5=A. R. |last6=Cranfill |first6=R. |year=2004 |title=Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences |journal=American Journal of Botany |volume=91 |issue=10|pages=1582–1598 |doi=10.3732/ajb.91.10.1582 |pmid=21652310 }}</ref> Other researchers state that taking fossils into account leads to different conclusions, for example that the ferns (Pteridophyta) are not monophyletic.<ref>{{Cite journal |last1=Rothwell |first1=G. W. |last2=Nixon |first2=K. C. |year=2006 |title=How Does the Inclusion of Fossil Data Change Our Conclusions about the Phylogenetic History of Euphyllophytes? |journal=International Journal of Plant Sciences |volume=167 |issue=3 |pages=737–749 |doi=10.1086/503298 |name-list-style=amp }}</ref> Hao and Xue presented an alternative phylogeny in 2013 for pre-[[euphyllophyte]] plants.<ref name="Hao-2013">{{cite book |last1=Hao |first1=Shougang |last2=Xue |first2=Jinzhuang |title=The Early Devonian Posongchong Flora of Yunnan: A Contribution to an Understanding of the Evolution and Early Diversification of Vascular Plants |date=2013 |publisher=Science Press |isbn=978-7-03-036616-0 }}{{page needed|date=October 2024}}</ref> {{Barlabel|size=27 |at1=5|label1=Rhyniopsids|bar1=#b88 |at2=8|label2=Renalioids|bar2=#aca |cladogram= {{clade|style=font-size:80%;line-height:80% |label1=[[Polysporangiophyte]]s |1={{clade |1=†[[Horneophytopsida|Horneophytaceae]] [[File:Horneophyton.svg|30px]] |label2=[[Tracheophyte]]s |2={{clade |1=†[[Cooksonia]]ceae |2={{clade |1=†''[[Aglaophyton]]'' |2={{clade |1=†[[Rhyniopsida]] [[File:Rhynia sp. - MUSE (cropped).jpg|50px]] |barbegin1=#b88 |2={{clade |1=†''[[Catenalis]]''|barend1=#b88 |2={{clade |1=†''[[Aberlemnia]]''|barbegin1=#aca |2={{clade |1=†[[Hsua]]ceae|bar1=#aca |2={{clade |1=†[[Renalia]]ceae [[File:Renalia reconstruction.jpg|40px]] |barend1=#aca |label2=[[Eutracheophyte]]s |2={{clade |1={{clade |1=†''[[Adoketophyton]]'' |2=†?[[Barinophytopsida]] |3=†[[Zosterophyllopsida]] }} |2={{clade |label1=[[Microphyll]]s |1={{clade |1=†''[[Hicklingia]]'' |2={{clade |1=†''[[Gumuia]]'' |2={{clade |1=†''[[Nothia (plant)|Nothia]]'' |2={{clade |1=[[Lycopodiopsida]] [[File:2021-03 Amsterdam Island - lycopodium clavatum 10.jpg|40px]] |2=†''[[Zosterophyllum deciduum]]'' }} }} }} }} |2={{clade |1=†''[[Yunia]]'' |label2=[[Euphyllophyte]]s |2={{clade |1=†''[[Eophyllophyton]]'' |2={{clade |1=†[[Trimerophytopsida]] |label2=[[Megaphyll]]s |2={{clade |label1=[[Moniliformopses]] |1={{clade |1=†''[[Ibyka]]'' |2={{clade |1=†''[[Pauthecophyton]]'' |2={{clade |1=†[[Cladoxylopsida]] |2=[[Polypodiopsida]] [[File:Polypodium vulgare Paprotka zwyczajna 2020-06-29 03.jpg|40px]] }} }} }} |label2=Radiatopses |2={{clade |1=†''[[Celatheca]]'' |2={{clade |1=†''[[Pertica]]'' |label2=Lignophytes |2={{clade |1=†[[Progymnosperm]]s<br />(paraphyletic) |2=[[Spermatophyte]]s [[File:PinusSylvestris.jpg|30px]] }} }} }} }} }} }} }} }} }} }} }} }} }} }} }} }} }} }} }} ==Nutrient distribution== [[File:ficusxylem.jpg|thumb|upright=1.35|[[Xylem]] elements in the shoot of a [[ficus|fig]] tree (''Ficus alba''), crushed in [[hydrochloric acid]] ]] Water and [[nutrient]]s in the form of inorganic solutes are drawn up from the soil by the roots and transported throughout the plant by the [[xylem]]. [[Organic compound]]s such as [[sucrose]] produced by [[photosynthesis]] in leaves are distributed by the [[phloem]] [[sieve tube element|sieve-tube elements]].{{cn|date=January 2025}} The '''xylem''' consists of [[vessel element|vessels]] in [[flowering plant]]s and of [[tracheid]]s in other vascular plants. Xylem cells are dead, hard-walled hollow cells arranged to form files of tubes that function in water transport. A tracheid cell wall usually contains the polymer [[lignin]].{{cn|date=January 2025}} The '''phloem''', on the other hand, consists of living cells called [[sieve-tube member]]s. Between the sieve-tube members are sieve plates, which have pores to allow molecules to pass through. Sieve-tube members lack such organs as [[Cell nucleus|nuclei]] or [[ribosome]]s, but cells next to them, the [[phloem#Companion cells|companion cells]], function to keep the sieve-tube members alive.{{cn|date=January 2025}} ===Transpiration=== The most abundant [[chemical compound|compound]] in all plants, as in all cellular organisms, is [[water]], which has an important structural role and a vital role in [[plant metabolism]]. [[Transpiration]] is the main process of water movement within plant tissues. Plants constantly transpire water through their [[stoma]]ta to the atmosphere and replace that water with soil moisture taken up by their roots. When the stomata are closed at night, water pressure can build up in the plant. Excess water is excreted through pores known as [[hydathode]]s.<ref>{{Cite web|url=https://ipm.missouri.edu/MEG/2009/6/Guttation-A-Pressure-Relief-for-Plants/index.cfm|title=Guttation: A Pressure Relief for Plants (Christopher Starbuck)|website=ipm.missouri.edu}}</ref> The movement of [[water]] out of the leaf stomata sets up transpiration pull or tension in the water column in the xylem vessels or tracheids. The pull is the result of water [[surface tension]] within the cell walls of the [[mesophyll]] cells, from the surfaces of which evaporation takes place when the stomata are open. [[Hydrogen bond]]s exist between water [[molecule]]s, causing them to line up; as the molecules at the top of the plant evaporate, each pulls the next one up to replace it, which in turn pulls on the next one in line. The draw of water upwards may be entirely passive and can be assisted by the movement of water into the roots via [[osmosis]]. Consequently, transpiration requires the plant to expend very little energy on water movement. Transpiration assists the plant in absorbing nutrients from the soil as soluble [[salts]]. Transpiration plays an important role in the absorption of nutrients from the soil as soluble salts are transported along with the water from the soil to the leaves. Plants can adjust their transpiration rate to optimize the balance between water loss and nutrient absorption.<ref>{{Cite journal |last1=Raven |first1=J. A. |last2=Edwards |first2=D. |date=2001-03-01 |title=Roots: evolutionary origins and biogeochemical significance |journal=Journal of Experimental Botany |volume=52 |issue=suppl 1 |pages=381–401 |doi=10.1093/jexbot/52.suppl_1.381 |pmid=11326045 |doi-access=free }}</ref> ===Absorption=== Living root cells passively absorb water. Pressure within the root increases when transpiration demand via [[osmosis]] is low and decreases when water demand is high. No water movement towards the shoots and leaves occurs when [[evapotranspiration]] is absent. This condition is associated with high temperature, high [[humidity]], darkness, and drought.{{Citation needed|date=July 2018}} ===Conduction=== Xylem is the water-conducting tissue, and the secondary xylem provides the raw material for the forest products industry.<ref>{{cite journal |last1=Zhao |first1=Chengsong |last2=Craig |first2=Johanna C. |last3=Petzold |first3=H. Earl |last4=Dickerman |first4=Allan W. |last5=Beers |first5=Eric P. |title=The Xylem and Phloem Transcriptomes from Secondary Tissues of the Arabidopsis Root-Hypocotyl |journal=Plant Physiology |date=June 2005 |volume=138 |issue=2 |pages=803–818 |doi=10.1104/pp.105.060202 |pmc=1150398 |pmid=15923329 }}</ref> Xylem and [[phloem]] tissues each play a part in the conduction processes within plants. Sugars are conveyed throughout the plant in the phloem; water and other nutrients pass through the xylem. Conduction occurs from a source to a sink for each separate nutrient. Sugars are produced in the leaves (a source) by [[photosynthesis]] and transported to the growing shoots and roots (sinks) for use in growth, [[cellular respiration]] or storage. Minerals are absorbed in the roots (a source) and transported to the shoots to allow [[cell division]] and growth.<ref>{{cite book |last1=Taiz |first1 =Lincoln |last2=Zeiger |first2 =Eduardo |author-link2 =Eliezer (Eduardo) Zeiger |chapter =5, 6, 10 |title=Plant Physiology |edition =3 |location =Sunderland, Massachusetts |publisher =Sinauer Associates |publication-date =2002 |page = |isbn = }} </ref><ref>{{Cite journal |last=Doyle |first=James A. |title=Phylogeny of Vascular Plants |date=1998 |journal=Annual Review of Ecology and Systematics |volume=29 |issue=1 |pages=567–599 |doi=10.1146/annurev.ecolsys.29.1.567 }}</ref><ref>{{Cite journal |last1=Heijmans |first1=Monique M. P. D. |last2=Arp |first2=Wim J. |last3=Berendse |first3=Frank |date=October 2001 |title=Effects of elevated CO 2 and vascular plants on evapotranspiration in bog vegetation: EVAPOTRANSPIRATION IN BOG VEGETATION |journal=Global Change Biology |language=en |volume=7 |issue=7 |pages=817–827 |doi=10.1046/j.1354-1013.2001.00440.x }}</ref> ==See also== * [[Fern ally|Fern allies]] * [[Bryophyte]]s * [[Non-vascular plant]] * [[Pteridophyte]] ==References== {{Reflist|30em}} ==Bibliography== {{Refbegin}} * {{cite book |editor-last1=Cracraft |editor-first1=Joel |editor-link1=Joel Cracraft |editor-last2=Donoghue |editor-first2=Michael J. |editor-link2=Michael Donoghue |title=Assembling the Tree of Life |url=https://books.google.com/books?id=6lXTP0YU6_kC |date=2004 |publisher=[[Oxford University Press]] |isbn=978-0-19-972960-9}} * {{cite journal |last1=Cantino |first1=Philip D. |last2=Doyle |first2=James A. |last3=Graham |first3=Sean W. |last4=Judd |first4=Walter S. |author-link4=Walter S. Judd |last5=Olmstead |first5=Richard G. |last6=Soltis |first6=Douglas E. |author-link6=Douglas Soltis |last7=Soltis |first7=Pamela S. |author-link7=Pamela Soltis |last8=Donoghue |first8=Michael J. |author-link8=Michael Donoghue |title=Towards a Phylogenetic Nomenclature of Tracheophyta |journal=[[Taxon (journal)|Taxon]] |date=1 August 2007 |volume=56 |issue=3 |pages=822 |doi=10.2307/25065865 |jstor=25065865 |ref=none}} * {{cite journal |last1=Kenrick |first1=P. |title=The relationships of vascular plants |journal=[[Philosophical Transactions of the Royal Society B: Biological Sciences]] |date=29 June 2000 |volume=355 |issue=1398 |pages=847–855 |doi=10.1098/rstb.2000.0619 |pmc=1692788 |pmid=10905613 |ref=none}} * {{cite book |last1=Pryer |first1=Kathleen M. |last2=Schneider |first2=Harald |last3=Magallon |first3=Susana |title=The radiation of vascular plants |date=13 November 2017 |pages=138–153 |url=https://sites.duke.edu/pryerlab/files/2017/10/Pryer-et-al.ToL2_.2004.pdf |ref=none}}, in {{harvtxt |Cracraft |Donoghue |2004}} {{Refend}} ==External links== * [https://biology.stackexchange.com/questions/68161/higher-plants-or-vascular-plants "Higher plants" or "vascular plants"?] {{Plant classification}} {{Botany}} {{Taxonbar|from=Q27133}} {{Authority control}} [[Category:Plants]] [[Category:Extant Silurian first appearances]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Authority control
(
edit
)
Template:Automatic taxobox
(
edit
)
Template:Barlabel
(
edit
)
Template:Botany
(
edit
)
Template:Circa
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite Merriam-Webster
(
edit
)
Template:Cite OED
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Cn
(
edit
)
Template:Etymology
(
edit
)
Template:Harvtxt
(
edit
)
Template:IPAc-en
(
edit
)
Template:Page needed
(
edit
)
Template:Plant classification
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)
Template:Taxonbar
(
edit
)
Search
Search
Editing
Vascular plant
Add topic