Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Sphalerite
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Zinc-iron sulfide mineral}} {{Redirect|Zincblende|crystal structure|Zincblende (crystal structure)}} {{Use American English|date=March 2021}} {{Infobox mineral | name = Sphalerite | category = [[Sulfide mineral]] | image = Sphalerite - Creede, Mineral County, Colorado, USA.jpg | imagesize = 275px | caption = Black crystals of sphalerite with minor [[chalcopyrite]] and [[calcite]] | formula = {{chem2|(Zn,Fe)S}} | IMAsymbol = Sp<ref>{{Cite journal|last=Warr|first=L.N.|date=2021|title=IMA–CNMNC approved mineral symbols|journal=Mineralogical Magazine|volume=85|issue=3|pages=291–320|doi=10.1180/mgm.2021.43|bibcode=2021MinM...85..291W|s2cid=235729616|doi-access=free}}</ref> | molweight = | strunz = 2.CB.05a | dana = 02.08.02.01 | system = [[Cubic crystal system|Cubic]] | class = Hextetrahedral ({{overline|4}}3m) <br/>[[H-M symbol]]: ({{overline|4}} 3m) | symmetry = ''F''{{overline|4}}3m (No. 216) | unit cell = a = 5.406 Å; Z = 4 | color = Light to dark brown, red-brown, yellow, red, green, light blue, black and colourless. | habit = Euhedral crystals – occurs as well-formed crystals showing good external form. Granular – generally occurs as anhedral to subhedral crystals in matrix. | cleavage = perfect dodecahedral on [011] | twinning = Simple contact twins or complex lamellar forms, twin axis [111] | fracture = Uneven to conchoidal | mohs = 3.5–4 | luster = Adamantine, resinous, greasy | refractive = n<sub>α</sub> = 2.369 | opticalprop = Isotropic | birefringence = | pleochroism = | streak = brownish white, pale yellow | gravity = 3.9–4.2 | melt = | fusibility = | diagnostic = | solubility = | diaphaneity = Transparent to translucent, opaque when iron-rich | other = non-radioactive, non-magnetic, fluorescent and triboluminescent. | references = <ref>{{WebMineral |url=http://webmineral.com/data/Sphalerite.shtml |name=Sphalerite |access-date=2011-06-20}}</ref><ref name=Mindat>{{Mindat |id=3727 |name=Sphalerite |access-date=2011-06-20}}</ref><ref name=Handbook>{{cite web |last1=Anthony |first1=John W. |last2=Bideaux |first2=Richard A. |last3=Bladh |first3=Kenneth W. |last4=Nichols |first4=Monte C. |title=Sphalerite |url=http://www.handbookofmineralogy.org/pdfs/sphalerite.pdf |website=Handbook of Mineralogy |publisher=Mineral Data Publishing |access-date=14 March 2022 |date=2005}}</ref> | SMILES = [SH+2]12[ZnH2-2][SH+2]3[ZnH2-2][SH+2]([ZnH-2]14)[ZnH-2]1[S+2]5([ZnH-2]38)[Zn-2]26[SH+2]2[ZnH-2]([S+2]4)[SH+2]1[ZnH2-2][SH+2]3[ZnH-2]2[S+2][ZnH-2]([SH+2]6[ZnH-2]([SH+2])[SH+2]68)[SH+2]([ZnH2-2]6)[ZnH-2]35 | Jmol = [SH+2]12[ZnH2-2][SH+2]3[ZnH2-2][SH+2]([ZnH-2]14)[ZnH-2]1[S+2]5([ZnH-2]38)[Zn-2]26[SH+2]2[ZnH-2]([S+2]4)[SH+2]1[ZnH2-2][SH+2]3[ZnH-2]2[S+2][ZnH-2]([SH+2]6[ZnH-2]([SH+2])[SH+2]68)[SH+2]([ZnH2-2]6)[ZnH-2]35 }} '''Sphalerite''' is a [[sulfide mineral]] with the [[chemical formula]] {{chem2|([[zinc|Zn]], [[iron|Fe]])[[sulfur|S]]}}.<ref name="Muntyan-1999">{{Cite journal|last=Muntyan|first=Barbara L.|date=1999|title=Colorado Sphalerite|url=http://www.tandfonline.com/doi/abs/10.1080/00357529909602545|journal=Rocks & Minerals|language=en|volume=74|issue=4|pages=220–235|doi=10.1080/00357529909602545|bibcode=1999RoMin..74..220M |issn=0035-7529|via=Scholars Portal Journals}}</ref> It is the most important ore of [[zinc]]. Sphalerite is found in a variety of deposit types, but it is primarily in [[Sedimentary exhalative deposits|sedimentary exhalative]], [[Carbonate-hosted lead-zinc ore deposits|Mississippi-Valley type]], and [[Volcanogenic massive sulfide ore deposit|volcanogenic massive sulfide]] deposits. It is found in association with [[galena]], [[chalcopyrite]], [[pyrite]] (and other [[sulfide mineral|sulfides]]), [[calcite]], [[dolomite (mineral)|dolomite]], [[quartz]], [[rhodochrosite]], and [[fluorite]].<ref name="Nesse-2013">{{Cite book|last=Nesse|first=William D.|url=https://www.worldcat.org/oclc/817795500|title=Introduction to optical mineralogy|publisher=Oxford University Press|year=2013|isbn=978-0-19-984627-6|edition=4th|location=New York|pages=121|oclc=817795500}}</ref> German geologist [[Ernst Friedrich Glocker]] discovered sphalerite in 1847, naming it based on the Greek word ''sphaleros'', meaning "deceiving", due to the difficulty of identifying the mineral.<ref>{{cite book |last=Glocker |first=Ernst Friedrich |author-link=Ernst Friedrich Glocker |url=http://worldcat.org/oclc/995480390 |title=Generum et specierum mineralium, secundum ordines naturales digestorum synopsis, omnium, quotquot adhuc reperta sunt mineralium nomina complectens. : Adjectis synonymis et veteribus et recentioribus ac novissimarum analysium chemicarum summis. Systematis mineralium naturalis prodromus. |oclc=995480390}}</ref> In addition to zinc, sphalerite is an ore of [[cadmium]], [[gallium]], [[germanium]], and [[indium]]. Miners have been known to refer to sphalerite as '''''zinc blende''''', ''black-jack'', and ''[[ruby blende]]''.<ref name="Rennie-Law-2016">{{Cite book|last=Richard Rennie and Jonathan Law|url=https://www.worldcat.org/oclc/936373100|title=A dictionary of chemistry|publisher=Oxford University Press|year=2016|isbn=978-0-19-178954-0|edition=7th|location=Oxford|pages=|oclc=936373100}}</ref> '''Marmatite''' is an opaque black variety with a high iron content.<ref>{{Cite journal|last1=Zhou|first1=Jiahui|last2=Jiang|first2=Feng|last3=Li|first3=Sijie|last4=Zhao|first4=Wenqing|last5=Sun|first5=Wei|last6=Ji|first6=Xiaobo|last7=Yang|first7=Yue|date=2019|title=Natural marmatite with low discharge platform and excellent cyclicity as potential anode material for lithium-ion batteries|url=https://linkinghub.elsevier.com/retrieve/pii/S0013468619315476|journal=Electrochimica Acta|language=en|volume=321|page=134676|doi=10.1016/j.electacta.2019.134676|s2cid=202080193|via=Elsevier SD Freedom Collection}}</ref> ==Crystal habit and structure== [[File:Sphalerite-unit-cell-depth-fade-3D-balls.png|left|thumb|The crystal structure of sphalerite]] Sphalerite crystallizes in the [[face-centered cubic]] [[Cubic crystal system#Zincblende structure|zincblende]] crystal structure,<ref name="Klein-2017a">{{Cite book|last=Klein|first=Cornelis|url=https://www.worldcat.org/oclc/962853030|title=Earth materials: introduction to mineralogy and petrology|date=2017|others=Anthony R. Philpotts|isbn=978-1-107-15540-4|edition=2nd|location=Cambridge, United Kingdom|oclc=962853030}}</ref> which was named after the mineral. This structure is a member of the hextetrahedral crystal class ([[space group]] ''F''{{overline|4}}3m). In the crystal structure, both the sulfur and the zinc or iron ions occupy the points of a face-centered cubic lattice, with the two lattices displaced from each other such that the zinc and iron are tetrahedrally coordinated to the sulfur ions, and ''vice versa''.<ref>{{cite book |last1=Klein |first1=Cornelis |last2=Hurlbut |first2=Cornelius S. Jr. |title=Manual of mineralogy : (after James D. Dana) |date=1993 |publisher=Wiley |location=New York |isbn=047157452X |edition=21st |pages=211–212}}</ref> Minerals similar to sphalerite include those in the sphalerite group, consisting of sphalerite, [[Coloradoite|colaradoite]], [[hawleyite]], [[metacinnabar]], [[stilleite]] and [[tiemannite]].<ref name="Cook-2003">{{Cite journal|last1=Cook|first1=Robert B.|date=2003|title=Connoisseur's Choice: Sphalerite, Eagle Mine, Gilman, Eagle County, Colorado|url=http://www.tandfonline.com/doi/abs/10.1080/00357529.2003.9926742|journal=Rocks & Minerals|language=en|volume=78|issue=5|pages=330–334|doi=10.1080/00357529.2003.9926742|bibcode=2003RoMin..78..330C |s2cid=130762310|issn=0035-7529}}</ref> The structure is closely related to the structure of [[diamond]].<ref name="Klein-2017a" /> The [[hexagonal (crystal system)|hexagonal]] polymorph of sphalerite is [[wurtzite]], and the trigonal polymorph is matraite.<ref name="Cook-2003" /> Wurtzite is the higher temperature polymorph, stable at temperatures above {{convert|1020|C||sp=us}}.<ref name="Deer-2013">{{Cite book|last=Deer|first=W. A.|url=https://www.worldcat.org/oclc/858884283|title=An introduction to the rock-forming minerals|date=2013|others=R. A. Howie, J. Zussman|isbn=978-0-903056-27-4|edition=3rd|location=London|oclc=858884283}}</ref> The lattice constant for zinc sulfide in the zinc blende crystal structure is 0.541 [[nanometer|nm]].<ref name="ICDD">[http://www.icdd.com/ International Centre for Diffraction Data reference 04-004-3804], ICCD reference 04-004-3804.</ref> Sphalerite has been found as a [[pseudomorph]], taking the crystal structure of [[galena]], [[tetrahedrite]], [[Baryte|barite]] and [[calcite]].<ref name="Deer-2013" /><ref>{{Cite book|last=Kloprogge|first=J. Theo|url=https://www.worldcat.org/oclc/999727666|title=Photo atlas of mineral pseudomorphism|date=2017|others=Robert M. Lavinsky|isbn=978-0-12-803703-4|location=Amsterdam, Netherlands|oclc=999727666}}</ref> Sphalerite can have Spinel Law twins, where the twin axis is [111]. The chemical formula of sphalerite is {{chem2|(Zn,Fe)S}}; the iron content generally increases with increasing formation temperature and can reach up to 40%.<ref name="Nesse-2013"/> The material can be considered a ternary compound between the binary endpoints [[Zinc sulfide|ZnS]] and [[Iron(II) sulfide|FeS]] with composition Zn<sub>x</sub>Fe<sub>(1-x)</sub>S, where x can range from 1 (pure ZnS) to 0.6.{{cn|date=April 2024}} All natural sphalerite contains concentrations of various impurities, which generally substitute for zinc in the cation position in the lattice; the most common cation impurities are [[cadmium]], [[Mercury (element)|mercury]] and [[manganese]], but [[gallium]], [[germanium]] and [[indium]] may also be present in relatively high concentrations (hundreds to thousands of ppm).<ref name="Cook-2009">{{Cite journal|last1=Cook|first1=Nigel J.|last2=Ciobanu|first2=Cristiana L.|last3=Pring|first3=Allan|last4=Skinner|first4=William|last5=Shimizu|first5=Masaaki|last6=Danyushevsky|first6=Leonid|last7=Saini-Eidukat|first7=Bernhardt|last8=Melcher|first8=Frank|date=2009|title=Trace and minor elements in sphalerite: A LA-ICPMS study|url=https://linkinghub.elsevier.com/retrieve/pii/S0016703709003263|journal=Geochimica et Cosmochimica Acta|language=en|volume=73|issue=16|pages=4761–4791|doi=10.1016/j.gca.2009.05.045|bibcode=2009GeCoA..73.4761C}}</ref><ref name="Frenzel-2016">{{Cite journal|last1=Frenzel|first1=Max|last2=Hirsch|first2=Tamino|last3=Gutzmer|first3=Jens|date=July 2016|title=Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — A meta-analysis|journal=Ore Geology Reviews|volume=76|pages=52–78|doi=10.1016/j.oregeorev.2015.12.017|bibcode=2016OGRv...76...52F }}</ref> Cadmium can replace up to 1% of zinc and manganese is generally found in sphalerite with high iron abundances.<ref name="Cook-2003" /> Sulfur in the anion position can be substituted for by [[selenium]] and [[tellurium]].<ref name="Cook-2003" /> The abundances of these impurities are controlled by the conditions under which the sphalerite formed; formation temperature, pressure, element availability and fluid composition are important controls.<ref name="Frenzel-2016" /> == Properties == === Physical properties === Sphalerite possesses perfect dodecahedral [[Cleavage (crystal)|cleavage]], having six cleavage planes.<ref name="Klein-2017a" /><ref name="Klein-2017b">{{Cite book|last1=Klein|first1=Cornelis|url=https://www.worldcat.org/oclc/975051556|title=Earth materials : introduction to mineralogy and petrology|last2=Philpotts|first2=Anthony|publisher=Cambridge University Press|year=2017|isbn=978-1-107-15540-4|edition=2nd|location=Cambridge|oclc=975051556}}</ref> In pure form, it is a semiconductor, but transitions to a conductor as the iron content increases.<ref>{{cite journal |last1=Deng |first1=Jiushuai |last2=Lai |first2=Hao |last3=Chen |first3=Miao |last4=Glen |first4=Matthew |last5=Wen |first5=Shuming |last6=Zhao |first6=Biao |last7=Liu |first7=Zilong |last8=Yang |first8=Hua |last9=Liu |first9=Mingshi |last10=Huang |first10=Lingyun |last11=Guan |first11=Shiliang |last12=Wang |first12=Ping |title=Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study |journal=Minerals Engineering |date=June 2019 |volume=136 |pages=168–174 |doi=10.1016/j.mineng.2019.02.012|bibcode=2019MiEng.136..168D |s2cid=182111130 }}</ref> It has a hardness of 3.5 to 4 on the [[Mohs scale of mineral hardness]].<ref name=King/> It can be distinguished from similar minerals by its perfect cleavage, its distinctive resinous luster, and the reddish-brown streak of the darker varieties.{{sfn|Klein|Hurlbut|1993|p=357}} === Optical properties === [[File:Sphalerite fluorescing.jpg|left|thumb|Sphalerite fluorescing under ultraviolet light (Sternberg Museum of Natural History, Kansas, US)]] Pure [[zinc sulfide]] is a [[wide-bandgap semiconductor]], with bandgap of about 3.54 electron volts, which makes the pure material transparent in the visible spectrum. Increasing iron content will make the material opaque, while various impurities can give the crystal a variety of colors.<ref name=King>Hobart M. King, [https://geology.com/minerals/sphalerite.shtml Sphalerite], geology.com. Retrieved 22 Feb. 2022.</ref> In thin section, sphalerite exhibits very high positive [[Optical relief|relief]] and appears colorless to pale yellow or brown, with no [[pleochroism]].<ref name="Nesse-2013"/> The [[refractive index]] of sphalerite (as measured via sodium light, average wavelength 589.3 nm) ranges from 2.37 when it is pure ZnS to 2.50 when there is 40% iron content.<ref name="Nesse-2013"/> Sphalerite is isotropic under cross-polarized light, however sphalerite can experience [[birefringence]] if intergrown with its polymorph wurtzite; the birefringence can increase from 0 (0% wurtzite) up to 0.022 (100% wurtzite).<ref name="Nesse-2013"/><ref name="Deer-2013" /> Depending on the impurities, sphalerite will [[Fluorescence#Gemology, mineralogy and geology|fluoresce]] under ultraviolet light. Sphalerite can be [[Triboluminescence|triboluminescent]].<ref>{{Cite web |date=2005 |title=Sphalerite |url=https://www.handbookofmineralogy.org/pdfs/sphalerite.pdf |access-date=2022-09-20 |website=Handbook of Mineralogy}}</ref> Sphalerite has a characteristic triboluminescence of yellow-orange. Typically, specimens cut into end-slabs are ideal for displaying this property.{{cn|date=April 2024}} ==Varieties== Gemmy, colorless to pale green sphalerite from [[Franklin, New Jersey]] (see [[Franklin Furnace]]), are highly fluorescent orange and/or blue under longwave ultraviolet light and are known as ''cleiophane'', an almost pure ZnS variety.<ref name="Manutchehr-Danai-2009">{{Cite book|last=Manutchehr-Danai|first=Mohsen|url=https://www.worldcat.org/oclc/646793373|title=Dictionary of gems and gemology|publisher=Springer-Verlag, Berlin, Heidelberg|year=2009|isbn=9783540727958|edition=3rd|location=New York|pages=|oclc=646793373}}</ref> Cleiophane contains less than 0.1% of iron in the sphalerite crystal structure.<ref name="Cook-2003" /> Marmatite or christophite is an opaque black variety of sphalerite and its coloring is due to high quantities of iron, which can reach up to 25%; marmatite is named after [[Marmato, Caldas|Marmato]] mining district in [[Colombia]] and christophite is named for the St. Christoph mine in [[Breitenbrunn, Saxony|Breitenbrunn]], [[Saxony]].<ref name="Manutchehr-Danai-2009" /> Both marmatite and cleiophane are not recognized by the [[International Mineralogical Association]] (IMA).<ref>{{Cite web|title=International Mineralogical Association – Commission on New Minerals, Nomenclature and Classification|url=http://cnmnc.main.jp/|access-date=2021-02-25|website=cnmnc.main.jp}}</ref> Red, orange or brownish-red sphalerite is termed ruby blende or ruby zinc, whereas dark colored sphalerite is termed black-jack.<ref name="Manutchehr-Danai-2009" /> ==Deposit types== Sphalerite is amongst the most common sulfide minerals, and it is found worldwide and in a variety of deposit types.<ref name="Rennie-Law-2016"/> The reason for the wide distribution of sphalerite is that it appears in many types of deposits; it is found in [[skarn]]s,<ref>{{Cite journal|last1=Ye|first1=Lin|last2=Cook|first2=Nigel J.|last3=Ciobanu|first3=Cristiana L.|last4=Yuping|first4=Liu|last5=Qian|first5=Zhang|last6=Tiegeng|first6=Liu|last7=Wei|first7=Gao|last8=Yulong|first8=Yang|last9=Danyushevskiy|first9=Leonid|date=2011|title=Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study|url=https://linkinghub.elsevier.com/retrieve/pii/S0169136811000217|journal=Ore Geology Reviews|language=en|volume=39|issue=4|pages=188–217|doi=10.1016/j.oregeorev.2011.03.001|bibcode=2011OGRv...39..188Y }}</ref> [[Hydrothermal mineral deposit|hydrothermal deposits]],<ref>{{Cite journal|last1=Knorsch|first1=Manuel|last2=Nadoll|first2=Patrick|last3=Klemd|first3=Reiner|date=2020|title=Trace elements and textures of hydrothermal sphalerite and pyrite in Upper Permian (Zechstein) carbonates of the North German Basin|url=https://linkinghub.elsevier.com/retrieve/pii/S0375674218306708|journal=Journal of Geochemical Exploration|language=en|volume=209|pages=106416|doi=10.1016/j.gexplo.2019.106416|bibcode=2020JCExp.20906416K |s2cid=210265207}}</ref> sedimentary beds,<ref>{{Cite journal|last1=Zhu|first1=Chuanwei|last2=Liao|first2=Shili|last3=Wang|first3=Wei|last4=Zhang|first4=Yuxu|last5=Yang|first5=Tao|last6=Fan|first6=Haifeng|last7=Wen|first7=Hanjie|date=2018|title=Variations in Zn and S isotope chemistry of sedimentary sphalerite, Wusihe Zn-Pb deposit, Sichuan Province, China|url=https://linkinghub.elsevier.com/retrieve/pii/S0169136817306224|journal=Ore Geology Reviews|language=en|volume=95|pages=639–648|doi=10.1016/j.oregeorev.2018.03.018|bibcode=2018OGRv...95..639Z }}</ref> [[Volcanogenic massive sulfide ore deposit|volcanogenic massive sulfide deposits]] (VMS),<ref>{{Cite journal|last1=Akbulut|first1=Mehmet|last2=Oyman|first2=Tolga|last3=Çiçek|first3=Mustafa|last4=Selby|first4=David|last5=Özgenç|first5=İsmet|last6=Tokçaer|first6=Murat|date=2016|title=Petrography, mineral chemistry, fluid inclusion microthermometry and Re–Os geochronology of the Küre volcanogenic massive sulfide deposit (Central Pontides, Northern Turkey)|url=https://linkinghub.elsevier.com/retrieve/pii/S016913681630004X|journal=Ore Geology Reviews|language=en|volume=76|pages=1–18|doi=10.1016/j.oregeorev.2016.01.002|bibcode=2016OGRv...76....1A }}</ref> [[Carbonate-hosted lead-zinc ore deposits|Mississippi-valley type deposits]] (MVT),<ref>{{Cite journal|last1=Nakai|first1=Shun'ichi|last2=Halliday|first2=Alex N|last3=Kesler|first3=Stephen E|last4=Jones|first4=Henry D|last5=Kyle|first5=J.Richard|last6=Lane|first6=Thomas E|date=1993|title=Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits|url=https://linkinghub.elsevier.com/retrieve/pii/0016703793904408|journal=Geochimica et Cosmochimica Acta|language=en|volume=57|issue=2|pages=417–427|doi=10.1016/0016-7037(93)90440-8|bibcode=1993GeCoA..57..417N|hdl=2027.42/31084|hdl-access=free}}</ref><ref>{{Cite journal|last1=Viets|first1=John G.|last2=Hopkins|first2=Roy T.|last3=Miller|first3=Bruce M.|date=1992|title=Variations in minor and trace metals in sphalerite from mississippi valley-type deposits of the Ozark region; genetic implications|url=http://pubs.geoscienceworld.org/economicgeology/article/87/7/1897/21105/Variations-in-minor-and-trace-metals-in-sphalerite|journal=Economic Geology|language=en|volume=87|issue=7|pages=1897–1905|doi=10.2113/gsecongeo.87.7.1897|bibcode=1992EcGeo..87.1897V |issn=1554-0774}}</ref> [[granite]]<ref name="Cook-2003" /> and [[coal]].<ref>{{Cite journal|last1=Hatch|first1=J. R.|last2=Gluskoter|first2=H. J.|last3=Lindahl|first3=P. C.|date=1976|title=Sphalerite in coals from the Illinois Basin|url=http://pubs.geoscienceworld.org/economicgeology/article/71/3/613/18771/Sphalerite-in-coals-from-the-Illinois-Basin|journal=Economic Geology|language=en|volume=71|issue=3|pages=613–624|doi=10.2113/gsecongeo.71.3.613|bibcode=1976EcGeo..71..613H |issn=1554-0774}}</ref> === Sedimentary exhalitive === Approximately 50% of zinc (from sphalerite) and lead comes from [[Sedimentary exhalative deposits|Sedimentary exhalative]] (SEDEX) deposits, which are stratiform Pb-Zn sulfides that form at seafloor vents.<ref name="Kropschot-2011">{{Cite journal|last1=Kropschot|first1=S.J.|last2=Doebrich|first2=Jeff L.|date=2011|title=Zinc-The key to preventing corrosion|journal=Fact Sheet|page=13 |doi=10.3133/fs20113016|issn=2327-6932|doi-access=free|bibcode=2011usgs.rept...13K }}</ref> The metals precipitate from hydrothermal fluids and are hosted by shales, carbonates and organic-rich siltstones in [[back-arc basin|back-arc basins]] and failed continental rifts.<ref name="Arndt-2015">{{Cite book|last=Arndt|first=N. T.|url=https://www.worldcat.org/oclc/914168910|title=Metals and society : an introduction to economic geology|date=2015|others=Stephen E. Kesler, Clément Ganino|isbn=978-3-319-17232-3|edition=2nd|location=Cham|oclc=914168910}}</ref> The main ore minerals in SEDEX deposits are sphalerite, galena, pyrite, [[pyrrhotite]] and [[marcasite]], with minor sulfosalts such as [[tetrahedrite]]-[[freibergite]] and [[boulangerite]]; the zinc + lead grade typically ranges between 10 and 20%.<ref name="Arndt-2015"/> Important SEDEX mines are [[Red Dog mine|Red Dog]] in [[Alaska]], [[Sullivan Mine]] in [[British Columbia]], [[Mount Isa Mines|Mount Isa]] and [[Broken Hill ore deposit|Broken Hill]] in [[Australia]] and Mehdiabad in [[Iran]].<ref>{{Cite journal|last1=Emsbo|first1=Poul|last2=Seal|first2=Robert R.|last3=Breit|first3=George N.|last4=Diehl|first4=Sharon F.|last5=Shah|first5=Anjana K.|date=2016|title=Sedimentary exhalative (SEDEX) zinc-lead-silver deposit model|journal=Scientific Investigations Report|page=11 |doi=10.3133/sir20105070n|issn=2328-0328|doi-access=free|bibcode=2016usgs.rept...11E }}</ref> === Mississippi-Valley type === Similar to SEDEX, Mississippi-Valley type (MVT) deposits are also a Pb-Zn deposit which contains sphalerite.<ref>{{Citation|last=Misra|first=Kula C.|title=Mississippi Valley-Type (MVT) Zinc-Lead Deposits|date=2000|url=http://dx.doi.org/10.1007/978-94-011-3925-0_13|work=Understanding Mineral Deposits|pages=573–612|place=Dordrecht|publisher=Springer Netherlands|doi=10.1007/978-94-011-3925-0_13|isbn=978-94-010-5752-3|access-date=2021-03-26}}</ref> However, they only account for 15–20% of zinc and lead, are 25% smaller in tonnage than SEDEX deposits and have lower grades of 5–10% Pb + Zn.<ref name="Arndt-2015"/> MVT deposits form from the replacement of carbonate host rocks such as dolostone and limestone by ore minerals; they are located in platforms and foreland thrust belts.<ref name="Arndt-2015"/> Furthermore, they are stratabound, typically Phanerozoic in age and epigenetic (form after the lithification of the carbonate host rocks).<ref name="Haldar-2020">{{Citation|last=Haldar|first=S.K.|title=Mineral deposits: host rocks and genetic model|date=2020|url=http://dx.doi.org/10.1016/b978-0-12-820585-3.00009-0|work=Introduction to Mineralogy and Petrology|pages=313–348|publisher=Elsevier|doi=10.1016/b978-0-12-820585-3.00009-0|isbn=978-0-12-820585-3|s2cid=226572449|access-date=2021-03-26}}</ref> The ore minerals are the same as SEDEX deposits: sphalerite, galena, pyrite, pyrrhotite and marcasite, with minor sulfosalts.<ref name="Haldar-2020" /> Mines that contain MVT deposits include Polaris in the Canadian arctic, Mississippi River in the [[United States]], Pine Point in Northwest Territories, and Admiral Bay in Australia.<ref>{{Cite journal|last=Sangster|first=D F|date=1995|title=Mississippi valley-type lead-zinc|doi=10.4095/207988|doi-access=free}}</ref> === Volcanogenic massive sulfide === Volcanogenic massive sulfide (VMS) deposits can be Cu-Zn- or Zn-Pb-Cu-rich, and accounts for 25% of Zn in reserves.<ref name="Arndt-2015"/> There are various types of VMS deposits with a range of regional contexts and host rock compositions; a common characteristic is that they are all hosted by submarine volcanic rocks.<ref name="Kropschot-2011"/> They form from metals such as copper and zinc being transferred by hydrothermal fluids (modified seawater) which leach them from volcanic rocks in the oceanic crust; the metal-saturated fluid rises through fractures and faults to the surface, where it cools and deposits the metals as a VMS deposit.<ref>{{Cite book|last=Roland.|first=Shanks, Wayne C. Thurston|url=http://worldcat.org/oclc/809680409|title=Volcanogenic massive sulfide occurrence model|date=2012|publisher=U.S. Dept. of the Interior, U.S. Geological Survey|oclc=809680409}}</ref> The most abundant ore minerals are pyrite, chalcopyrite, sphalerite and pyrrhotite.<ref name="Arndt-2015" /> Mines that contain VMS deposits include [[Kidd Mine|Kidd Creek]] in Ontario, Urals in [[Russia]], Troodos in [[Cyprus]], and Besshi in [[Japan]].<ref>{{Cite journal|last=du Bray|first=Edward A.|date=1995|title=Preliminary compilation of descriptive geoenvironmental mineral deposit models|journal=Open-File Report|page=61 |doi=10.3133/ofr95831|issn=2331-1258|doi-access=free|bibcode=1995usgs.rept...61D }}</ref> === Localities === The top producers of sphalerite include the United States, Russia, [[Mexico]], [[Germany]], Australia, [[Canada]], [[China]], [[Ireland]], [[Peru]], [[Kazakhstan]] and [[England]].<ref>{{Cite journal|last=Muntyan|first=Barbara L.|date=1999|title=Colorado Sphalerite|url=http://www.tandfonline.com/doi/abs/10.1080/00357529909602545|journal=Rocks & Minerals|language=en|volume=74|issue=4|pages=220–235|doi=10.1080/00357529909602545|bibcode=1999RoMin..74..220M |issn=0035-7529}}</ref><ref name="Routledge-2003">{{Cite book|chapter=Zinc|date=2003-09-02|chapter-url=https://www.taylorfrancis.com/books/9781135356118/chapters/10.4324/9780203403556-47|title=Agricultural and Mineral Commodities Year Book|pages=358–366|edition=0|publisher=Routledge|language=en|doi=10.4324/9780203403556-47|isbn=978-0-203-40355-6|access-date=2021-02-25}}</ref> Sources of high quality crystals include: {|class="wikitable" !Place!!Country |- |[[Freiberg, Saxony|Freiberg]], [[Saxony]], <br>[[Neudorf, Saxony-Anhalt|Neudorf]], [[Harz Mountains]]||Germany |- |[[Lengenbach Quarry]], [[Binntal]], [[Valais]]|| [[Switzerland]] |- | [[Horní Slavkov]] and [[Příbram]]||[[Czech Republic]] |- |[[Rodna]]|| [[Romania]] |- |[[Madan, Smolyan Province]], [[Rhodope Mountains]]|| [[Bulgaria]] |- | Aliva mine, [[Picos de Europa]] Mountains, [[Cantabria]] [Santander] Province|| [[Spain]] |- | [[Alston Moor]], [[Cumbria]]|| England |- |Dalnegorsk, [[Primorskiy Kray]]|| Russia |- |[[Watson Lake, Yukon|Watson Lake]], [[Yukon Territory]]|| Canada |- |[[Flin Flon]], [[Manitoba]]||Canada |- |[[Tri-State district]] including deposits near<br>[[Baxter Springs]], [[Cherokee County, Kansas]];<br>[[Joplin, Missouri|Joplin]], [[Jasper County, Missouri]]<br>and [[Picher, Oklahoma|Picher]], [[Ottawa County, Oklahoma]]||US |- |Elmwood mine, near [[Carthage, Tennessee|Carthage]], [[Smith County, Tennessee]]||US |- |Eagle mine, Gilman district, [[Eagle County, Colorado]]||US |- |[[Santa Eulalia, Chihuahua]]||Mexico |- |[[Naica]], [[Chihuahua (state)|Chihuahua]]||Mexico |- |[[Cananea]], [[Sonora]]||Mexico |- |Huaron||Peru |- |Casapalca||Peru |- |[[Huancavelica]]||Peru |- |[[Zinkgruvan]]|| [[Sweden]] |} == Uses == === Metal ore === Sphalerite is an important ore of zinc; around 95% of all primary zinc is extracted from sphalerite ore.<ref name=USGS>{{Cite web|title=Zinc Statistics and Information|url=https://www.usgs.gov/centers/nmic/zinc-statistics-and-information|access-date=2021-02-25|website=www.usgs.gov}}</ref> However, due to its variable trace element content, sphalerite is also an important source of several other metals such as cadmium,<ref>{{Cite book|url=https://minerals.usgs.gov/minerals/pubs/commodity/cadmium/|title=Cadmium – In: USGS Mineral Commodity Summaries|publisher=United States Geological Survey|year=2017}}</ref> gallium,<ref>{{Cite journal|last1=Frenzel|first1=Max|last2=Ketris|first2=Marina P.|last3=Seifert|first3=Thomas|last4=Gutzmer|first4=Jens|date=March 2016|title=On the current and future availability of gallium|journal=Resources Policy|volume=47|pages=38–50|doi=10.1016/j.resourpol.2015.11.005|bibcode=2016RePol..47...38F }}</ref> germanium,<ref>{{Cite journal|last1=Frenzel|first1=Max|last2=Ketris|first2=Marina P.|last3=Gutzmer|first3=Jens|date=2014-04-01|title=On the geological availability of germanium|journal=Mineralium Deposita|language=en|volume=49|issue=4|pages=471–486|bibcode=2014MinDe..49..471F|doi=10.1007/s00126-013-0506-z|issn=0026-4598|s2cid=129902592}}</ref> and indium<ref>{{Cite journal|last1=Frenzel|first1=Max|last2=Mikolajczak|first2=Claire|last3=Reuter|first3=Markus A.|last4=Gutzmer|first4=Jens|date=June 2017|title=Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium|journal=Resources Policy|volume=52|pages=327–335|doi=10.1016/j.resourpol.2017.04.008|bibcode=2017RePol..52..327F |doi-access=free}}</ref> which replace zinc. The ore was originally called ''blende'' by miners (from German ''blind'' or ''deceiving'') because it resembles galena but yields no lead.{{sfn|Klein|Hurlbut|1993|p=357}} === Brass and bronze === The zinc in sphalerite is used to produce [[brass]], an alloy of copper with 3–45% zinc.<ref name="Klein-2017b"/> Major element alloy compositions of brass objects provide evidence that sphalerite was being used to produce brass by the Islamic as far back as the [[Middle Ages|medieval ages]] between the 7th and 16th century CE.<ref>{{Cite book|last=Craddock|first=P.T.|title=Brass in the medieval Islamic world; 2000 years of zinc and brass|publisher=British Museum Publications Ltd.|year=1990|isbn=0-86159-050-3|pages=73–101}}</ref> Sphalerite may have also been used during the cementation process of brass in Northern China during the 12th–13th century CE ([[Jin dynasty (1115–1234)|Jin Dynasty]]).<ref>{{Cite journal|last1=Xiao|first1=Hongyan|last2=Huang|first2=Xin|last3=Cui|first3=Jianfeng|date=2020|title=Local cementation brass production during 12th–13th century CE, North China: Evidences from a royal summer palace of Jin Dynasty|url=https://linkinghub.elsevier.com/retrieve/pii/S2352409X2030448X|journal=Journal of Archaeological Science: Reports|language=en|volume=34|pages=102657|doi=10.1016/j.jasrep.2020.102657|bibcode=2020JArSR..34j2657X |s2cid=229414402}}</ref> Besides brass, the zinc in sphalerite can also be used to produce certain types of bronze; bronze is dominantly copper which is alloyed with other metals such as tin, zinc, lead, nickel, iron and arsenic.<ref>{{Cite book|last=Tylecote|first=R. F.|url=https://www.worldcat.org/oclc/705004248|title=A history of metallurgy|date=2002|publisher=Maney Pub., for the Institute of Materials|others=Institute of Materials|isbn=1-902653-79-3|edition=2nd|location=London|oclc=705004248}}</ref> [[File:Etoile d'Asturies, sphalerite.jpg|thumb|250x250px|Faceted sphalerite, known by the name of Étoile des Asturies, one of the largest in existence. It actually comes from the Aliva mine, Cantabria (Spain). Cantonal Museum of Geology of Lausanne.]] === Other === * [[Yule Marble]] – sphalerite is found as inclusions in yule marble, which is used as a building material for the [[Lincoln Memorial]] and [[Tomb of the Unknown Soldier|Tomb of the Unknown]].<ref>{{Cite book|last=S.|first=McGee, E.|url=http://worldcat.org/oclc/1004947563|title=Colorado Yule marble : building stone of the Lincoln Memorial : an investigation of differences in durability of the Colorado Yule marble, a widely used building stone|date=1999|publisher=U.S. Dept. of the Interior, U.S. Geological Survey|isbn=0-607-91994-9|oclc=1004947563}}</ref> * [[Galvanization|Galvanized iron]] – zinc from sphalerite is used as a protective coating to prevent corrosion and rusting; it is used on power transmission towers, nails and automobiles.<ref name="Routledge-2003"/> * Batteries.<ref>{{Cite journal|last1=Hai|first1=Yun|last2=Wang|first2=Shuonan|last3=Liu|first3=Hao|last4=Lv|first4=Guocheng|last5=Mei|first5=Lefu|last6=Liao|first6=Libing|date=2020|title=Nanosized Zinc Sulfide/Reduced Graphene Oxide Composite Synthesized from Natural Bulk Sphalerite as Good Performance Anode for Lithium-Ion Batteries|url=http://link.springer.com/10.1007/s11837-020-04372-5|journal=JOM|language=en|volume=72|issue=12|pages=4505–4513|doi=10.1007/s11837-020-04372-5|bibcode=2020JOM....72.4505H|s2cid=224897123|issn=1047-4838}}</ref> * [[Gemstone]].<ref>{{Cite journal|last1=Voudouris|first1=Panagiotis|last2=Mavrogonatos|first2=Constantinos|last3=Graham|first3=Ian|last4=Giuliani|first4=Gaston|last5=Tarantola|first5=Alexandre|last6=Melfos|first6=Vasilios|last7=Karampelas|first7=Stefanos|last8=Katerinopoulos|first8=Athanasios|last9=Magganas|first9=Andreas|date=2019-07-29|title=Gemstones of Greece: Geology and Crystallizing Environments|journal=Minerals|language=en|volume=9|issue=8|pages=461|doi=10.3390/min9080461|bibcode=2019Mine....9..461V|issn=2075-163X|doi-access=free}}</ref><ref>{{Cite journal|last1=Murphy|first1=Jack|last2=Modreski|first2=Peter|date=2002-08-01|title=A Tour of Colorado Gemstone Localities|url=http://www.tandfonline.com/doi/abs/10.1080/00357529.2002.9925639|journal=Rocks & Minerals|language=en|volume=77|issue=4|pages=218–238|doi=10.1080/00357529.2002.9925639|bibcode=2002RoMin..77..218M |s2cid=128754037|issn=0035-7529}}</ref> == Gallery == <gallery widths="165px" heights="140px"> File:Sphalerite-barite (Cumberland Mine, Smith County, Tennessee, USA).jpg|Sphalerite and barite from Cumberland Mine, Tennessee, US File:Sphalerite on dolostone (Millersville Quarry, Sandusky County, Ohio, USA).jpg|Sphalerite on dolostone, from Millersville Quarry, Ohio, US File:Calcite-Sphalerite-elm05b.jpg|Tan crystal of calcite attached to a cluster of black sphalerite crystals File:Sphalerite-221270.jpg|Sharp, tetrahedral sphalerite crystals with minor associated chalcopyrite from the Idarado Mine, Telluride, Ouray District, Colorado, US File:Sphalerite-Quartz-261762.jpg|Gem quality twinned cherry-red sphalerite crystal (1.8 cm) from Hunan Province, China File:Esfalerita (Blenda acaramelada) Áliva, Cantabria.jpg|Sphalerite crystals from Áliva, Camaleño, Cantabria (Spain) File:Fluorite and sphalerite J1.jpg|Purple fluorite and sphalerite, from the Elmwood mine, Smith county, Tennessee, US File:Geodized brachiopod.jpg|Sphalerite crystal in geodized [[brachiopod]] </gallery> == See also == * [[List of minerals]] ==References== {{Reflist}} ==Further reading== *Dana's Manual of Mineralogy {{ISBN|0-471-03288-3}} *Webster, R., Read, P. G. (Ed.) (2000). ''Gems: Their sources, descriptions and identification'' (5th ed.), p. 386. Butterworth-Heinemann, Great Britain. {{ISBN|0-7506-1674-1}} ==External links== {{Commons category|Sphalerite}} *[https://web.archive.org/web/20081019230935/http://cst-www.nrl.navy.mil/lattice/struk/b3.html The sphalerite structure] *[http://www.physorg.com/news85048433.html Possible relation of Sphalerite to origins of life and precursor chemicals in 'Primordial Soup'] *[http://www.minerals.net/mineral/sulfides/sphaleri/sphaleri.htm Minerals.net] *[http://simplethinking.com/palache/sphalerite.stm Minerals of Franklin, NJ] {{ores}} {{Authority control}} [[Category:Gemstones]] [[Category:Sulfide minerals]] [[Category:Zinc minerals]] [[Category:Cubic minerals]] [[Category:Minerals in space group 216]] [[Category:Luminescent minerals]] [[Category:Zincblende crystal structure]] [[Category:Minerals described in 1847]] [[Category:Blendes]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Authority control
(
edit
)
Template:Chem2
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Cn
(
edit
)
Template:Commons category
(
edit
)
Template:Convert
(
edit
)
Template:ISBN
(
edit
)
Template:Infobox mineral
(
edit
)
Template:Ores
(
edit
)
Template:Overline
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Use American English
(
edit
)
Search
Search
Editing
Sphalerite
Add topic