Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Special unitary group
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Group of unitary matrices with determinant of 1}} {{redirect|SU(5)|the specific grand unification theory|Georgi–Glashow model}} {{Group theory sidebar |Topological}} {{Lie groups |Classical}} In mathematics, the '''special unitary group''' of degree {{math|''n''}}, denoted {{math|SU(''n'')}}, is the [[Lie group]] of {{math|''n'' × ''n''}} [[Unitary matrix|unitary matrices]] with [[determinant]] 1. The [[Matrix (mathematics)|matrices]] of the more general [[unitary group]] may have [[complex number|complex]] determinants with absolute value 1, rather than real 1 in the special case. The group operation is [[matrix multiplication]]. The special unitary group is a [[normal subgroup]] of the [[unitary group]] {{math|U(''n'')}}, consisting of all {{math|''n''×''n''}} unitary matrices. As a [[classical group|compact classical group]], {{math|U(''n'')}} is the group that preserves the [[inner product space#Some examples|standard inner product]] on <math>\mathbb{C}^n</math>.{{efn|For a characterization of {{math|U(''n'')}} and hence {{math|SU(''n'')}} in terms of preservation of the standard inner product on <math>\mathbb{C}^n</math>, see ''[[Classical group]]''.}} It is itself a subgroup of the [[general linear group]], <math>\operatorname{SU}(n) \subset \operatorname{U}(n) \subset \operatorname{GL}(n, \mathbb{C} ).</math> The {{math|SU(''n'')}} groups find wide application in the [[Standard Model]] of [[particle physics]], especially {{math|[[#The_group_SU(2)|SU(2)]]}} in the [[electroweak interaction]] and {{math|[[#SU(3)|SU(3)]]}} in [[quantum chromodynamics]].<ref>{{cite book |author1=Halzen, Francis |authorlink1 = Francis Halzen |author2=Martin, Alan | authorlink2 = Alan Martin (physicist)| title=Quarks & Leptons: An Introductory Course in Modern Particle Physics |url=https://archive.org/details/quarksleptonsint0000halz |url-access=registration | publisher=John Wiley & Sons | year=1984 | isbn=0-471-88741-2}}</ref> The simplest case, {{math|SU(1)}}, is the [[trivial group]], having only a single element. The group {{math|SU(2)}} is [[isomorphic]] to the group of [[quaternion]]s of [[Quaternion#Conjugation, the norm, and reciprocal|norm]] 1, and is thus [[diffeomorphic]] to the [[3-sphere]]. Since [[unit quaternion]]s can be used to represent rotations in 3-dimensional space (uniquely up to sign), there is a [[surjective]] [[homomorphism]] from {{math|SU(2)}} to the [[rotation group SO(3)|rotation group {{math|SO(3)}}]] whose [[kernel (algebra)|kernel]] is {{math|{+''I'', −''I''}<!--this comment forces preceding brace to render as math-->}}.{{efn|For an explicit description of the homomorphism {{math|SU(2) → SO(3)}}, see [[rotation group SO(3)#Connection between SO(3) and SU(2)|Connection between SO(3) and SU(2)]].}} Since the quaternions can be identified as the even subalgebra of the Clifford Algebra {{math|Cl(3)}}, {{math|SU(2)}} is in fact identical to one of the symmetry groups of [[spinor]]s, [[spin group|Spin]](3), that enables a spinor presentation of rotations. == Properties == The special unitary group {{math|SU(''n'')}} is a strictly real [[Lie group]] (vs. a more general [[complex Lie group]]). Its dimension as a [[manifold|real manifold]] is {{math|''n''<sup>2</sup> − 1}}. Topologically, it is [[compact space|compact]] and [[simply connected]].<ref>{{harvnb|Hall|2015}}, Proposition 13.11</ref> Algebraically, it is a [[simple Lie group]] (meaning its [[Lie algebra]] is simple; see below).<ref>{{cite book |author-link=Brian Garner Wybourne |author=Wybourne, B.G. |year=1974 |title=Classical Groups for Physicists |publisher=Wiley-Interscience |isbn=0471965057}}</ref> The [[center of a group|center]] of {{math|SU(''n'')}} is isomorphic to the [[cyclic group]] <math>\mathbb{Z}/n\mathbb{Z}</math>, and is composed of the diagonal matrices {{math|''ζ'' ''I''}} for {{math|''ζ''}} an {{math|''n''}}th root of unity and {{math|''I''}} the {{math|''n'' × ''n''}} identity matrix. Its [[outer automorphism group]] for {{math|''n'' ≥ 3}} is <math>\mathbb{Z}/2\mathbb{Z},</math> while the outer automorphism group of {{math|SU(2)}} is the [[trivial group]]. A [[maximal torus]] of [[Algebraic torus#Split rank of a semisimple group|rank]] {{math|''n'' − 1}} is given by the set of diagonal matrices with determinant {{math|1}}. The [[Weyl group#The Weyl group of a connected compact Lie group|Weyl group]] of {{math|SU(''n'')}} is the [[symmetric group]] {{math|''S<sub>n</sub>''}}, which is represented by [[generalized permutation matrix#Signed permutation group|signed permutation matrices]] (the signs being necessary to ensure that the determinant is {{math|1}}). The [[Lie algebra]] of {{math|SU(''n'')}}, denoted by <math>\mathfrak{su}(n)</math>, can be identified with the set of [[traceless]] [[antiHermitian|anti‑Hermitian]] {{math|''n'' × ''n''}} complex matrices, with the regular [[commutator]] as a Lie bracket. [[Particle physics|Particle physicists]] often use a different, equivalent representation: The set of traceless [[Hermitian]] {{math|''n'' × ''n''}} complex matrices with Lie bracket given by {{math|−''i''}} times the commutator. == Lie algebra == {{main|Classical group#U(p, q) and U(n) – the unitary groups}} The Lie algebra <math>\mathfrak{su}(n)</math> of <math>\operatorname{SU}(n)</math> consists of {{math|''n'' × ''n''}} [[skew Hermitian matrix|skew-Hermitian]] matrices with trace zero.<ref>{{harvnb|Hall|2015}} Proposition 3.24</ref> This (real) Lie algebra has dimension {{math|''n''<sup>2</sup> − 1}}. More information about the structure of this Lie algebra can be found below in ''{{slink|#Lie algebra structure}}''. === Fundamental representation === In the physics literature, it is common to identify the Lie algebra with the space of trace-zero ''Hermitian'' (rather than the skew-Hermitian) matrices. That is to say, the physicists' Lie algebra differs by a factor of <math>i</math> from the mathematicians'. With this convention, one can then choose generators {{math|''T''<sub>''a''</sub>}} that are [[trace (linear algebra)|traceless]] [[Hermitian matrix|Hermitian]] complex {{math|''n'' × ''n''}} matrices, where: <math display="block"> T_a \, T_b = \tfrac{1}{\, 2n \,}\,\delta_{ab}\,I_n + \tfrac{1}{2}\,\sum_{c=1}^{n^2 -1}\left(if_{abc} + d_{abc} \right) \, T_c </math> where the {{math|''f''}} are the [[structure constants]] and are antisymmetric in all indices, while the {{math|''d''}}-coefficients are symmetric in all indices. As a consequence, the commutator is: <math display="block"> ~ \left[T_a, \, T_b\right] ~ = ~ i \sum_{c=1}^{n^2 -1} \, f_{abc} \, T_c \;,</math> and the corresponding anticommutator is: <math display="block"> \left\{T_a, \, T_b\right\} ~ = ~ \tfrac{1}{n} \, \delta_{ab} \, I_n + \sum_{c=1}^{n^2 -1}{d_{abc} \, T_c} ~.</math> The factor of {{math|''i''}} in the commutation relation arises from the physics convention and is not present when using the mathematicians' convention. The conventional normalization condition is <math display="block">\sum_{c,e=1}^{n^2 - 1} d_{ace}\,d_{bce} = \frac{\, n^2 - 4 \,}{n} \, \delta_{ab}~ .</math> The generators satisfy the Jacobi identity:<ref>{{Cite book |last=Georgi |first=Howard |url=https://www.taylorfrancis.com/books/9780429499210 |title=Lie Algebras in Particle Physics: From Isospin to Unified Theories |date=2018-05-04 |publisher=CRC Press |isbn=978-0-429-49921-0 |edition=1 |location=Boca Raton |language=en |doi=10.1201/9780429499210|bibcode=2018laip.book.....G }}</ref> <math display="block">[T_a,[T_b,T_c]]+[T_b,[T_c,T_a]]+[T_c,[T_a,T_b]]=0.</math> By convention, in the physics literature the generators <math>T_a</math> are defined as the traceless Hermitian complex matrices with a <math>1/2</math> prefactor: for the <math>SU(2)</math> group, the generators are chosen as <math>\frac{1}{2} \sigma_1, \frac{1}{2} \sigma_2, \frac{1}{2} \sigma_3</math> where <math>\sigma_a</math> are the [[Pauli matrices]], while for the case of <math>SU(3)</math> one defines <math>T_a = \frac{1}{2} \lambda_a</math> where <math>\lambda_a</math> are the [[Gell-Mann matrices]].<ref>{{Cite book |last=Georgi |first=Howard |url=https://www.taylorfrancis.com/books/9780429499210 |title=Lie Algebras in Particle Physics: From Isospin to Unified Theories |date=2018-05-04 |publisher=CRC Press |isbn=978-0-429-49921-0 |edition=1 |location=Boca Raton |language=en |doi=10.1201/9780429499210|bibcode=2018laip.book.....G }}</ref> With these definitions, the generators satisfy the following normalization condition: <math display="block">Tr(T_a T_b) = \frac{1}{2} \delta_{ab}.</math> === Adjoint representation === In the {{math|(''n''<sup>2</sup> − 1)}}-dimensional [[adjoint representation of a Lie group|adjoint representation]], the generators are represented by {{math|(''n''<sup>2</sup> − 1) × (''n''<sup>2</sup> − 1)}} matrices, whose elements are defined by the structure constants themselves: <math display="block">\left(T_a\right)_{jk} = -if_{ajk}.</math> == The group SU(2) == {{see also|Versor|Pauli matrices|3D rotation group#A note on Lie algebras|Representation theory of SU(2)}} Using [[matrix multiplication]] for the binary operation, {{math|SU(2)}} forms a group,<ref>{{harvnb|Hall|2015}} Exercise 1.5</ref> <math display="block">\operatorname{SU}(2) = \left\{ \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix}: \ \ \alpha,\beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1 \right\}~,</math> where the overline denotes [[complex conjugate|complex conjugation]]. === Diffeomorphism with the 3-sphere ''S''<sup>3</sup> === If we consider <math>\alpha,\beta</math> as a pair in <math>\mathbb{C}^2</math> where <math>\alpha=a+bi</math> and <math>\beta=c+di</math>, then the equation <math>|\alpha|^2 + |\beta|^2 = 1</math> becomes <math display="block"> a^2 + b^2 + c^2 + d^2 = 1 </math> This is the equation of the [[3-sphere|3-sphere S<sup>3</sup>]]. This can also be seen using an embedding: the map <math display="block">\begin{align} \varphi \colon \mathbb{C}^2 \to{} &\operatorname{M}(2, \mathbb{C}) \\[5pt] \varphi(\alpha, \beta) ={} &\begin{pmatrix} \alpha & -\overline{\beta}\\ \beta & \overline{\alpha}\end{pmatrix}, \end{align}</math> where <math>\operatorname{M}(2,\mathbb{C})</math> denotes the set of 2 by 2 complex matrices, is an injective real linear map (by considering <math>\mathbb{C}^2</math> [[diffeomorphism|diffeomorphic]] to <math>\mathbb{R}^4</math> and <math>\operatorname{M}(2,\mathbb{C})</math> diffeomorphic to <math>\mathbb{R}^8</math>). Hence, the [[restriction (mathematics)|restriction]] of {{math|''φ''}} to the [[3-sphere]] (since modulus is 1), denoted {{math|''S''<sup>3</sup>}}, is an embedding of the 3-sphere onto a compact submanifold of <math>\operatorname{M}(2,\mathbb{C})</math>, namely {{math|1=''φ''(''S''<sup>3</sup>) = SU(2)}}. Therefore, as a manifold, {{math|''S''<sup>3</sup>}} is diffeomorphic to {{math|SU(2)}}, which shows that {{math|SU(2)}} is [[simply connected space|simply connected]] and that {{math|''S''<sup>3</sup>}} can be endowed with the structure of a compact, connected [[Lie group]]. === Isomorphism with group of versors === [[Quaternion]]s of norm 1 are called [[versor]]s since they generate the [[Rotation group SO(3)#Using quaternions of unit norm|rotation group SO(3)]]: The {{math|SU(2)}} matrix: <math display="block"> \begin{pmatrix} a + bi & c + di \\ -c + di & a - bi \end{pmatrix} \quad (a, b, c, d \in \mathbb{R}) </math> can be mapped to the quaternion <math display="block">a\,\hat{1} + b\,\hat{i} + c\,\hat{j} + d\,\hat{k}</math> This map is in fact a [[group isomorphism]]. Additionally, the determinant of the matrix is the squared norm of the corresponding quaternion. Clearly any matrix in {{math|SU(2)}} is of this form and, since it has determinant {{math|1}}, the corresponding quaternion has norm {{math|1}}. Thus {{math|SU(2)}} is isomorphic to the group of versors.<ref>{{cite web |url=http://alistairsavage.ca/mat4144/notes/MAT4144-5158-LieGroups.pdf |series=MATH 4144 notes |title=LieGroups |last=Savage |first=Alistair}}</ref> === Relation to spatial rotations === {{Main|3D rotation group#Connection between SO(3) and SU(2)|Quaternions and spatial rotation}} Every versor is naturally associated to a spatial rotation in 3 dimensions, and the product of versors is associated to the composition of the associated rotations. Furthermore, every rotation arises from exactly two versors in this fashion. In short: there is a 2:1 surjective homomorphism from {{math|SU(2)}} to [[3D rotation group|{{math|SO(3)}}]]; consequently {{math|SO(3)}} is isomorphic to the [[quotient group]] {{math|SU(2)/{{mset|±I}}}}, the manifold underlying {{math|SO(3)}} is obtained by identifying antipodal points of the 3-sphere {{math|''S''<sup>3</sup>}}, and {{math|SU(2)}} is the [[Covering group#Universal covering group|universal cover]] of {{math|SO(3)}}. === Lie algebra <span class="anchor" id="Lie algebra basis"></span> === The [[Lie algebra]] of {{math|SU(2)}} consists of {{math|2 × 2}} [[skew Hermitian matrix|skew-Hermitian]] matrices with trace zero.<ref>{{harvnb|Hall|2015}} Proposition 3.24</ref> Explicitly, this means <math display="block">\mathfrak{su}(2) = \left\{ \begin{pmatrix} i\ a & -\overline{z} \\ z & -i\ a \end{pmatrix}:\ a \in \mathbb{R}, z \in \mathbb{C} \right\}~.</math> The Lie algebra is then generated by the following matrices, <math display="block">u_1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad u_3 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}~, </math> which have the form of the general element specified above. This can also be written as <math>\mathfrak{s u}(2)=\operatorname{span}\left\{i \sigma_{1}, i \sigma_{2}, i \sigma_{3}\right\}</math> using the [[Pauli matrices#SU(2)|Pauli matrices]]. These satisfy the [[quaternion]] relationships <math>u_2\ u_3 = -u_3\ u_2 = u_1~,</math> <math>u_3\ u_1 = -u_1\ u_3 = u_2~,</math> and <math>u_1 u_2 = -u_2\ u_1 = u_3~.</math> The [[commutator bracket]] is therefore specified by <math display="block">\left[u_3, u_1\right] = 2\ u_2, \quad \left[u_1, u_2\right] = 2\ u_3, \quad \left[u_2, u_3\right] = 2\ u_1~.</math> The above generators are related to the [[Pauli matrices]] by <math>u_1 = i\ \sigma_1~, \, u_2 = -i\ \sigma_2</math> and <math>u_3 = +i\ \sigma_3~.</math> This representation is routinely used in [[quantum mechanics]] to represent the [[Spin (physics)|spin]] of [[fundamental particle]]s such as [[electron]]s. They also serve as [[unit vector]]s for the description of our 3 spatial dimensions in [[loop quantum gravity]]. They also correspond to the [[quantum logic gate#Pauli gates (X,Y,Z)|Pauli X, Y, and Z gates]], which are standard generators for the single qubit gates, corresponding to 3d rotations about the axes of the [[Bloch sphere]]. The Lie algebra serves to work out the [[representation theory of SU(2)|representations of {{math|SU(2)}}]]. == SU(3) == {{see also|Clebsch–Gordan coefficients for SU(3)}} The group {{math|SU(3)}} is an 8-dimensional [[simple Lie group]] consisting of all {{math|3 × 3}} [[Unitary matrix|unitary]] [[Matrix (mathematics)|matrices]] with [[determinant]] 1. === Topology === The group {{math|SU(3)}} is a simply-connected, compact Lie group.<ref>{{harvnb|Hall|2015}} Proposition 13.11</ref> Its topological structure can be understood by noting that {{math|SU(3)}} acts [[transitive action|transitively]] on the unit sphere <math>S^5</math> in <math>\mathbb{C}^3 \cong \mathbb{R}^6</math>. The [[Group action (mathematics)#Fixed points and stabilizer subgroups|stabilizer]] of an arbitrary point in the sphere is isomorphic to {{math|SU(2)}}, which topologically is a 3-sphere. It then follows that {{math|SU(3)}} is a [[fiber bundle]] over the base {{math|''S''<sup>5</sup>}} with fiber {{math|''S''<sup>3</sup>}}. Since the fibers and the base are simply connected, the simple connectedness of {{math|SU(3)}} then follows by means of a standard topological result (the [[Homotopy group#Long exact sequence of a fibration|long exact sequence of homotopy groups]] for fiber bundles).<ref>{{harvnb|Hall|2015}} Section 13.2</ref> The {{math|SU(2)}}-bundles over {{math|''S''<sup>5</sup>}} are classified by <math>\pi_4\mathord\left(S^3\right) = \mathbb{Z}_2</math> since any such bundle can be constructed by looking at trivial bundles on the two hemispheres <math>S^5_\text{N}, S^5_\text{S}</math> and looking at the transition function on their intersection, which is a copy of {{math|''S''<sup>4</sup>}}, so <math display="block">S^5_\text{N} \cap S^5_\text{S} \simeq S^4</math> Then, all such transition functions are classified by homotopy classes of maps <math display="block">\left[S^4, \mathrm{SU}(2)\right] \cong \left[S^4, S^3\right] = \pi_4\mathord\left(S^3\right) \cong \mathbb{Z}/2</math> and as <math>\pi_4(\mathrm{SU}(3)) = \{0\}</math> rather than <math>\mathbb{Z}/2</math>, {{math|SU(3)}} cannot be the trivial bundle {{math|SU(2) × ''S''<sup>5</sup> ≅ ''S''<sup>3</sup> × ''S''<sup>5</sup>}}, and therefore must be the unique nontrivial (twisted) bundle. This can be shown by looking at the induced long exact sequence on homotopy groups. === Representation theory === The representation theory of {{math|SU(3)}} is well-understood.<ref>{{harvnb|Hall|2015}} Chapter 6</ref> Descriptions of these representations, from the point of view of its complexified Lie algebra <math>\mathfrak{sl}(3; \mathbb{C})</math>, may be found in the articles on [[Lie algebra representation#Classifying finite-dimensional representations of Lie algebras|Lie algebra representations]] or [[Clebsch–Gordan coefficients for SU(3)#Representations of the SU(3) group|the Clebsch–Gordan coefficients for {{math|SU(3)}}]]. === Lie algebra === The generators, {{mvar|T}}, of the Lie algebra <math>\mathfrak{su}(3)</math> of {{math|SU(3)}} in the defining (particle physics, Hermitian) representation, are <math display="block">T_a = \frac{\lambda_a}{2}~, </math> where {{math|''λ''<sub>a</sub>}}, the [[Gell-Mann matrices]], are the {{math|SU(3)}} analog of the [[Pauli matrices]] for {{math|SU(2)}}: <math display="block">\begin{align} \lambda_1 ={} &\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \lambda_2 ={} &\begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \lambda_3 ={} &\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\[6pt] \lambda_4 ={} &\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, & \lambda_5 ={} &\begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \\[6pt] \lambda_6 ={} &\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, & \lambda_7 ={} &\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, & \lambda_8 = \frac{1}{\sqrt{3}} &\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \end{align}</math> These {{math|''λ''<sub>a</sub>}} span all [[trace (linear algebra)|traceless]] [[Hermitian matrix|Hermitian matrices]] {{mvar|H}} of the [[Lie algebra]], as required. Note that {{math|''λ''<sub>2</sub>, ''λ''<sub>5</sub>, ''λ''<sub>7</sub>}} are antisymmetric. They obey the relations <math display="block">\begin{align} \left[T_a, T_b\right] &= i \sum_{c=1}^8 f_{abc} T_c, \\ \left\{T_a, T_b\right\} &= \frac{1}{3} \delta_{ab} I_3 + \sum_{c=1}^8 d_{abc} T_c, \end{align}</math> or, equivalently, <math display="block">\begin{align} \left[\lambda_a, \lambda_b\right] &= 2i \sum_{c=1}^8 f_{abc} \lambda_c, \\ \{\lambda_a, \lambda_b\} &= \frac{4}{3}\delta_{ab} I_3 + 2\sum_{c=1}^8{d_{abc} \lambda_c}. \end{align}</math> The {{mvar|f}} are the [[structure constants]] of the Lie algebra, given by <math display="block">\begin{align} f_{123} &= 1, \\ f_{147} = -f_{156} = f_{246} = f_{257} = f_{345} = -f_{367} &= \frac{1}{2}, \\ f_{458} = f_{678} &= \frac{\sqrt{3}}{2}, \end{align}</math> while all other {{math|''f<sub>abc</sub>''}} not related to these by permutation are zero. In general, they vanish unless they contain an odd number of indices from the set {{math|{{mset|2, 5, 7}}}}.{{efn|So fewer than {{frac|1|6}} of all {{math|''f<sub>abc</sub>''}}s are non-vanishing.}} The symmetric coefficients {{math|''d''}} take the values <math display="block">\begin{align} d_{118} = d_{228} = d_{338} = -d_{888} &= \frac{1}{\sqrt{3}} \\ d_{448} = d_{558} = d_{668} = d_{778} &= -\frac{1}{2\sqrt{3}} \\ d_{344} = d_{355} = -d_{366} = -d_{377} = -d_{247} = d_{146} = d_{157} = d_{256} &= \frac{1}{2} ~. \end{align}</math> They vanish if the number of indices from the set {{math|{{mset|2, 5, 7}}}} is odd. A generic {{math|SU(3)}} group element generated by a traceless 3×3 Hermitian matrix {{mvar|H}}, normalized as {{math|tr(''H''<sup>2</sup>) {{=}} 2}}, can be expressed as a ''second order'' matrix polynomial in {{mvar|H}}:<ref>{{cite journal|last1=Rosen|first1=S P|title=Finite Transformations in Various Representations of SU(3)|journal=Journal of Mathematical Physics|volume=12|issue=4|year=1971|pages=673–681 |doi=10.1063/1.1665634|bibcode=1971JMP....12..673R}}; {{cite journal|doi=10.1016/S0034-4877(15)30040-9|title= Elementary results for the fundamental representation of SU(3)|author1= Curtright, T L|author2=Zachos, C K|year=2015|journal=Reports on Mathematical Physics|volume=76|issue=3|pages=401–404|bibcode=2015RpMP...76..401C|arxiv=1508.00868|s2cid= 119679825}}</ref> <math display="block">\begin{align} \exp(i\theta H) ={} &\left[-\frac{1}{3} I\sin\left(\varphi + \frac{2\pi}{3}\right) \sin\left(\varphi - \frac{2\pi}{3}\right) - \frac{1}{2\sqrt{3}}~H\sin(\varphi) - \frac{1}{4}~H^2\right] \frac{\exp\left(\frac{2}{\sqrt{3}}~i\theta\sin(\varphi)\right)} {\cos\left(\varphi + \frac{2\pi}{3}\right) \cos\left(\varphi - \frac{2\pi}{3}\right)} \\[6pt] & {} + \left[-\frac{1}{3}~I\sin(\varphi) \sin\left(\varphi - \frac{2\pi}{3}\right) - \frac{1}{2\sqrt{3}}~H\sin\left(\varphi + \frac{2\pi}{3}\right) - \frac{1}{4}~H^{2}\right] \frac{\exp\left(\frac{2}{\sqrt{3}}~i\theta \sin\left(\varphi + \frac{2\pi}{3}\right)\right)} {\cos(\varphi) \cos\left(\varphi - \frac{2\pi}{3}\right)} \\[6pt] & {} + \left[-\frac{1}{3}~I\sin(\varphi) \sin\left(\varphi + \frac{2\pi}{3}\right) - \frac{1}{2\sqrt{3}}~H \sin\left(\varphi - \frac{2\pi}{3}\right) - \frac{1}{4}~H^2\right] \frac{\exp\left(\frac{2}{\sqrt{3}}~i\theta \sin\left(\varphi - \frac{2\pi}{3}\right)\right)} {\cos(\varphi)\cos\left(\varphi + \frac{2\pi}{3}\right)} \end{align}</math> LP where <math display="block">\varphi \equiv \frac{1}{3}\left[\arccos\left(\frac{3\sqrt{3}}{2}\det H\right) - \frac{\pi}{2}\right].</math> == Lie algebra structure == As noted above, the Lie algebra <math>\mathfrak{su}(n)</math> of {{math|SU(''n'')}} consists of {{math|''n'' × ''n''}} [[skew Hermitian matrix|skew-Hermitian]] matrices with trace zero.<ref>{{harvnb|Hall|2015}} Proposition 3.24</ref> The [[complexification]] of the Lie algebra <math>\mathfrak{su}(n)</math> is <math>\mathfrak{sl}(n; \mathbb{C})</math>, the space of all {{math|''n'' × ''n''}} complex matrices with trace zero.<ref>{{harvnb|Hall|2015}} Section 3.6</ref> A [[Cartan subalgebra]] then consists of the diagonal matrices with trace zero,<ref>{{harvnb|Hall|2015}} Section 7.7.1</ref> which we identify with vectors in <math>\mathbb C^n</math> whose entries sum to zero. The [[root system|roots]] then consist of all the {{math|''n''(''n'' − 1)}} permutations of {{math|(1, −1, 0, ..., 0)}}. A choice of [[simple root (root system)|simple root]]s is <math display="block">\begin{align} (&1, -1, 0, \dots, 0, 0), \\ (&0, 1, -1, \dots, 0, 0), \\ &\vdots \\ (&0, 0, 0, \dots, 1, -1). \end{align}</math> So, {{math|SU(''n'')}} is of [[Rank (linear algebra)|rank]] {{math|''n'' − 1}} and its [[Dynkin diagram]] is given by {{math|A<sub>''n''−1</sub>}}, a chain of {{math|''n'' − 1}} nodes: {{Dynkin|node|3|node|3|node|3}}...{{Dynkin|3|node}}.<ref>{{harvnb|Hall|2015}} Section 8.10.1</ref> Its [[Cartan matrix]] is <math display="block">\begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \dots & 0 \\ 0 & -1 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 2 \end{pmatrix}. </math> Its [[Weyl group]] or [[Coxeter group]] is the [[symmetric group]] {{math|S<sub>''n''</sub>}}, the [[symmetry group]] of the {{math|(''n'' − 1)}}-[[simplex]]. == Generalized special unitary group == For a [[field (mathematics)|field]] {{math|''F''}}, the '''generalized special unitary group over ''F''''', {{math|SU(''p'', ''q''; ''F'')}}, is the [[Group (mathematics)|group]] of all [[linear transformation]]s of [[determinant]] 1 of a [[vector space]] of rank {{math|1=''n'' = ''p'' + ''q''}} over {{math|''F''}} which leave invariant a [[nondegenerate form|nondegenerate]], [[Hermitian form]] of [[signature of a quadratic form|signature]] {{math|(''p'', ''q'')}}. This group is often referred to as the '''special unitary group of signature {{math|''p'' ''q''}} over {{math|''F''}}'''. The field {{math|''F''}} can be replaced by a [[commutative ring]], in which case the vector space is replaced by a [[free module]]. Specifically, fix a [[Hermitian matrix]] {{math|''A''}} of signature {{math|''p'' ''q''}} in <math>\operatorname{GL}(n, \mathbb{R})</math>, then all <math display="block">M \in \operatorname{SU}(p, q, \mathbb{R})</math> satisfy <math display="block">\begin{align} M^{*} A M &= A \\ \det M &= 1. \end{align}</math> Often one will see the notation {{math|SU(''p'', ''q'')}} without reference to a ring or field; in this case, the ring or field being referred to is <math>\mathbb C</math> and this gives one of the classical [[Lie group]]s. The standard choice for {{math|''A''}} when <math>\operatorname{F} = \mathbb{C}</math> is <math display="block">A = \begin{bmatrix} 0 & 0 & i \\ 0 & I_{n-2} & 0 \\ -i & 0 & 0 \end{bmatrix}. </math> However, there may be better choices for {{math|''A''}} for certain dimensions which exhibit more behaviour under restriction to subrings of <math>\mathbb C</math>. === Example === An important example of this type of group is the [[Picard modular group]] <math>\operatorname{SU}(2, 1; \mathbb{Z}[i])</math> which acts (projectively) on complex hyperbolic space of dimension two, in the same way that <math>\operatorname{SL}(2,9;\mathbb{Z})</math> acts (projectively) on real [[hyperbolic space]] of dimension two. In 2005 Gábor Francsics and [[Peter Lax]] computed an explicit fundamental domain for the action of this group on {{math|HC<sup>2</sup>}}.<ref>{{cite arXiv |eprint=math/0509708 |date=September 2005 |title=An explicit fundamental domain for the Picard modular group in two complex dimensions |last1=Francsics |first1=Gabor |last2=Lax |first2=Peter D.}}</ref> A further example is <math>\operatorname{SU}(1, 1; \mathbb{C})</math>, which is isomorphic to <math>\operatorname{SL}(2, \mathbb{R})</math>. == Important subgroups == In physics the special unitary group is used to represent [[fermionic]] symmetries. In theories of [[symmetry breaking]] it is important to be able to find the subgroups of the special unitary group. Subgroups of {{math|SU(''n'')}} that are important in [[Grand unification theory|GUT physics]] are, for {{math|''p'' > 1, ''n'' − ''p'' > 1}}, <math display="block">\operatorname{SU}(n) \supset \operatorname{SU}(p) \times \operatorname{SU}(n - p) \times \operatorname{U}(1),</math> where × denotes the [[direct product of groups|direct product]] and {{math|U(1)}}, known as the [[circle group]], is the multiplicative group of all [[complex number]]s with [[absolute value#Complex numbers|absolute value]] 1. For completeness, there are also the [[orthogonal group|orthogonal]] and [[compact symplectic group|symplectic]] subgroups, <math display="block">\begin{align} \operatorname{SU}(n) &\supset \operatorname{SO}(n), \\ \operatorname{SU}(2n) &\supset \operatorname{Sp}(n). \end{align}</math> Since the [[rank of a Lie group|rank]] of {{math|SU(''n'')}} is {{math|''n'' − 1}} and of {{math|U(1)}} is 1, a useful check is that the sum of the ranks of the subgroups is less than or equal to the rank of the original group. {{math|SU(''n'')}} is a subgroup of various other Lie groups, <math display="block">\begin{align} \operatorname{SO}(2n) &\supset \operatorname{SU}(n) \\ \operatorname{Sp}(n) &\supset \operatorname{SU}(n) \\ \operatorname{Spin}(4) &= \operatorname{SU}(2) \times \operatorname{SU}(2) \\ \operatorname{E}_6 &\supset \operatorname{SU}(6) \\ \operatorname{E}_7 &\supset \operatorname{SU}(8) \\ \operatorname{G}_2 &\supset \operatorname{SU}(3) \end{align}</math> See ''[[Spin group]]'' and ''[[Simple Lie group]]'' for {{math|E<sub>6</sub>}}, {{math|E<sub>7</sub>}}, and {{math|G<sub>2</sub>}}. There are also the [[spin group#Exceptional isomorphisms|accidental isomorphisms]]: {{math|1 = SU(4) = Spin(6)}}, {{math|1 = SU(2) = Spin(3) = Sp(1)}},{{efn|{{math|Sp(''n'')}} is the [[compact real form]] of <math>\operatorname{Sp}(2n, \mathbb{C})</math>. It is sometimes denoted {{math|USp(''2n'')}}. The dimension of the {{math|Sp(''n'')}}-matrices is {{math|2''n'' × 2''n''}}.}} and {{math|1 = U(1) = Spin(2) = SO(2)}}. One may finally mention that {{math|SU(2)}} is the [[double covering group]] of {{math|SO(3)}}, a relation that plays an important role in the theory of rotations of 2-[[spinor]]s in non-relativistic [[quantum mechanics]]. == SU(1, 1) == <math>\mathrm{SU}(1,1) = \left \{ \begin{pmatrix}u & v \\ v^* & u^* \end{pmatrix} \in M(2,\mathbb{C}): u u^* - v v^* = 1 \right \},</math> where <math>~u^*~</math> denotes the [[complex conjugate]] of the complex number {{mvar|u}}. This group is isomorphic to {{math|SL(2,ℝ)}} and {{math|Spin(2,1)}}<ref>{{cite book |first=Robert |last=Gilmore |year=1974 |title=Lie Groups, Lie Algebras and some of their Applications |pages=52, 201−205 |publisher=[[John Wiley & Sons]] |mr=1275599}}</ref> where the numbers separated by a comma refer to the [[signature (quadratic form)|signature]] of the [[quadratic form]] preserved by the group. The expression <math>~u u^* - v v^*~</math> in the definition of {{math|SU(1,1)}} is an [[Hermitian form]] which becomes an [[isotropic quadratic form]] when {{mvar|u}} and {{math|''v''}} are expanded with their real components. An early appearance of this group was as the "unit sphere" of [[coquaternion]]s, introduced by [[James Cockle]] in 1852. Let <math display="block"> j = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\,, \quad k = \begin{bmatrix} 1 & \;~0 \\ 0 & -1 \end{bmatrix}\,, \quad i = \begin{bmatrix} \;~0 & 1 \\ -1 & 0 \end{bmatrix}~. </math> Then <math>~j\,k = \begin{bmatrix} 0 & -1 \\ 1 & \;~0 \end{bmatrix} = -i ~,~</math> <math>~ i\,j\,k = I_2 \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}~,~</math> the 2×2 identity matrix, <math>~k\,i = j ~,</math> and <math>\;i\,j = k \;,</math> and the elements {{mvar|i, j,}} and {{mvar|k}} all [[anticommutative property|anticommute]], as in [[quaternion]]s. Also <math>i</math> is still a square root of {{math|−''I''{{sub|2}}}} (negative of the identity matrix), whereas <math>~j^2 = k^2 = +I_2~</math> are not, unlike in quaternions. For both quaternions and [[coquaternion]]s, all scalar quantities are treated as implicit multiples of {{mvar|I}}{{sub|2}} and notated as {{math|'''1'''}}. The coquaternion <math>~q = w + x\,i + y\,j + z\,k~</math> with scalar {{mvar|w}}, has conjugate <math>~q = w - x\,i - y\,j - z\,k~</math> similar to Hamilton's quaternions. The quadratic form is <math>~q\,q^* = w^2 + x^2 - y^2 - z^2.</math> Note that the 2-sheet [[hyperboloid]] <math>\left\{ x i + y j + z k : x^2 - y^2 - z^2 = 1 \right\}</math> corresponds to the [[imaginary unit]]s in the algebra so that any point {{mvar|p}} on this hyperboloid can be used as a '''pole''' of a sinusoidal wave according to [[Euler's formula]]. The hyperboloid is stable under {{math|SU(1, 1)}}, illustrating the isomorphism with {{math|Spin(2, 1)}}. The variability of the pole of a wave, as noted in studies of [[polarization (waves)|polarization]], might view [[elliptical polarization]] as an exhibit of the elliptical shape of a wave with {{nowrap|pole <math>~p \ne \pm i~</math>.}} The [[Poincaré sphere (optics)|Poincaré sphere]] model used since 1892 has been compared to a 2-sheet hyperboloid model,<ref>{{cite journal |first1=R.D. |last1=Mota |first2=D. |last2=Ojeda-Guillén |first3=M. |last3=Salazar-Ramírez |first4=V.D. |last4=Granados |year=2016 |title=SU(1,1) approach to Stokes parameters and the theory of light polarization |journal=Journal of the Optical Society of America B |volume=33 |issue=8 |pages=1696–1701 |arxiv=1602.03223 |doi=10.1364/JOSAB.33.001696|bibcode=2016JOSAB..33.1696M |s2cid=119146980 }}</ref> and the practice of [[SU(1,1) interferometry|{{math|SU(1, 1)}} interferometry]] has been introduced. When an element of {{math|SU(1, 1)}} is interpreted as a [[Möbius transformation]], it leaves the [[unit disk]] stable, so this group represents the [[motion (geometry)|motion]]s of the [[Poincaré disk model]] of hyperbolic plane geometry. Indeed, for a point {{math|<big>[</big>z, 1<big>]</big>}} in the [[complex projective line]], the action of {{math|SU(1,1)}} is given by <math display="block">\begin{pmatrix}u & v \\ v^* & u^* \end{pmatrix}\,\bigl[\;z,\;1\;\bigr] = [\;u\,z + v, \, v^*\,z +u^*\;] \, = \, \left[\;\frac{uz + v}{v^*z +u^*}, \, 1 \;\right]</math> since in [[projective coordinates]] <math>(\;u\,z + v, \; v^*\,z +u^*\;) \thicksim \left(\;\frac{\,u\,z + v\,}{v^*\,z +u^*}, \; 1 \;\right).</math> Writing <math>\;suv + \overline{suv} = 2\,\Re\mathord\bigl(\,suv\,\bigr)\;,</math> complex number arithmetic shows <math display="block">\bigl|u\,z + v\bigr|^2 = S + z\,z^* \quad \text{ and } \quad \bigl|v^*\,z + u^*\bigr|^2 = S + 1~,</math> where <math>S = v\,v^* \left(z\,z^* + 1\right) + 2\,\Re\mathord\bigl(\,uvz\,\bigr).</math> Therefore, <math>z\,z^* < 1 \implies \bigl|uz + v\bigr| < \bigl|\,v^*\,z + u^*\,\bigr|</math> so that their ratio lies in the open disk.<ref>{{cite book |author-link=C. L. Siegel |last=Siegel |first=C. L. |year=1971 |title=Topics in Complex Function Theory |volume=2 |pages=13–15 |translator1-last=Shenitzer |translator1-first=A. |translator2-last=Tretkoff |translator2-first=M. |publisher=Wiley-Interscience |isbn=0-471-79080 X}}</ref> == See also == {{Portal|Mathematics}} * [[Unitary group]] * [[Projective special unitary group]], {{math|PSU(''n'')}} * [[Orthogonal group]] * [[Generalizations of Pauli matrices]] * [[Representation theory of SU(2)]] == Footnotes == {{notelist|1}} == Citations == {{Reflist|25em}} == References == * {{Citation| last=Hall|first=Brian C.|title=Lie Groups, Lie Algebras, and Representations: An Elementary Introduction|edition=2nd|series=Graduate Texts in Mathematics|volume=222|publisher=Springer|year=2015|isbn=978-3319134666}} * {{Citation| last=Iachello|first=Francesco|title=Lie Algebras and Applications|series=Lecture Notes in Physics|volume=708|publisher=Springer|year=2006|isbn=3540362363}} {{DEFAULTSORT:Special Unitary Group}} [[Category:Lie groups]] [[Category:Mathematical physics]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Dynkin
(
edit
)
Template:Efn
(
edit
)
Template:Group theory sidebar
(
edit
)
Template:Harvnb
(
edit
)
Template:Lie groups
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Notelist
(
edit
)
Template:Nowrap
(
edit
)
Template:Portal
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)
Template:Sub
(
edit
)
Search
Search
Editing
Special unitary group
Add topic