Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Sedenion
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Hypercomplex number system}} {{Infobox number system | official_name = Sedenions | symbol = <math>\mathbb S</math> | type = [[Hypercomplex number|Hypercomplex]] [[algebra over a field|algebra]] | units = e<sub>0</sub>, ..., e<sub>15</sub> | identity = e<sub>0</sub> | properties = {{Plainlist| *[[Power associativity]] *[[Distributivity]] }} }} In [[abstract algebra]], the '''sedenions''' form a 16-[[dimension of a vector space|dimensional]] [[commutative property|noncommutative]] and [[associative property|nonassociative]] [[algebra over a field|algebra]] over the [[real number]]s, usually represented by the capital letter S, boldface {{math|'''S'''}} or [[blackboard bold]] <math>\mathbb S</math>. The sedenions are obtained by applying the [[Cayley–Dickson construction]] to the [[octonion]]s, which can be mathematically expressed as <math>\mathbb{S}=\mathcal{CD}(\mathbb{O},1)</math>.<ref name="Ensembles">{{cite web|url=https://mathsci.kaist.ac.kr/~tambour/fichiers/publications/Ensembles_de_nombres.pdf|date=6 September 2011|title=Ensembles de nombre|publisher=Forum Futura-Science|access-date=11 October 2024|language=fr}}</ref> As such, the octonions are [[isomorphism|isomorphic]] to a [[Subalgebra#Subalgebras for algebras over a ring or field|subalgebra]] of the sedenions. Unlike the octonions, the sedenions are not an [[alternative algebra]]. Applying the Cayley–Dickson construction to the sedenions yields a 32-dimensional algebra, called the [[trigintaduonion]]s or sometimes the 32-nions.<ref>Raoul E. Cawagas, et al. (2009). [https://arxiv.org/abs/0907.2047 "THE BASIC SUBALGEBRA STRUCTURE OF THE CAYLEY-DICKSON ALGEBRA OF DIMENSION 32 (TRIGINTADUONIONS)"].</ref> The term ''sedenion'' is also used for other 16-dimensional algebraic structures, such as a tensor product of two copies of the [[biquaternion]]s, or the algebra of 4 × 4 [[matrix (mathematics)|matrices]] over the real numbers, or that studied by {{harvtxt|Smith |1995}}. == Arithmetic == [[File:Sedenion-Fano Tesseract.gif|thumb|A visualization of a 4D extension to the cubic [[Octonion#Fano plane mnemonic|octonion]],<ref>{{Harv|Baez|2002|loc=p. 6}}</ref> showing the 35 triads as [[hyperplane]]s through the real <math>(e_0)</math> vertex of the sedenion example given]] Every sedenion is a [[linear combination]] of the unit sedenions <math>e_0</math>, <math>e_1</math>, <math>e_2</math>, <math>e_3</math>, ..., <math>e_{15}</math>, which form a [[Basis (linear algebra)|basis]] of the [[vector space]] of sedenions. Every sedenion can be represented in the form :<math>x = x_0 e_0 + x_1 e_1 + x_2 e_2 + \cdots + x_{14} e_{14} + x_{15} e_{15}.</math> Addition and subtraction are defined by the addition and subtraction of corresponding coefficients and multiplication is [[distributive property|distributive]] over addition. Like other algebras based on the [[Cayley–Dickson construction]], the sedenions contain the algebra they were constructed from. So they contain the octonions (generated by <math>e_0</math> to <math>e_7</math> in the table below), and therefore also the [[quaternion]]s (generated by <math>e_0</math> to <math>e_3</math>), [[complex number]]s (generated by <math>e_0</math> and <math>e_1</math>) and real numbers (generated by <math>e_0</math>). === Multiplication === Like [[octonion]]s, [[multiplication]] of sedenions is neither [[commutative]] nor [[associative]]. However, in contrast to the octonions, the sedenions do not even have the property of being [[alternative algebra|alternative]]. They do, however, have the property of [[power associativity]], which can be stated as that, for any element <math>x</math> of <math>\mathbb{S}</math>, the power <math>x^n</math> is well defined. They are also [[Flexible algebra|flexible]]. The sedenions have a multiplicative [[identity element]] <math>e_0</math> and multiplicative inverses, but they are not a [[division algebra]] because they have [[zero divisors]]: two nonzero sedenions can be multiplied to obtain zero, for example <math>(e_3 + e_{10})(e_6 - e_{15})</math>. All [[hypercomplex number]] systems after sedenions that are based on the Cayley–Dickson construction also contain zero divisors. The sedenion multiplication table is shown below: {| class="wikitable" style="margin:1em auto; text-align: center;" !colspan="2" rowspan="2"| <math>e_ie_j</math> !colspan="16" |<math>e_j</math> |- ! <math>e_0</math> ! <math>e_1</math> ! <math>e_2</math> ! <math>e_3</math> ! <math>e_4</math> ! <math>e_5</math> ! <math>e_6</math> ! <math>e_7</math> ! <math>e_8</math> ! <math>e_9</math> ! <math>e_{10}</math> ! <math>e_{11}</math> ! <math>e_{12}</math> ! <math>e_{13}</math> ! <math>e_{14}</math> ! <math>e_{15}</math> |- <!-- Would color coding the cells be nice or annoying? There are too many similar greenish shades though... --> ! rowspan="16" | <math>e_i</math> ! width="30pt" | <math>e_0</math><!-- color: white; when minus sign --> | width="30pt" <!-- style="color: black; background-color: hsla( 0, 0%, 50%, 1);" --> | <math>e_0</math> | width="30pt" <!-- style="color: black; background-color: hsla( 0, 100%, 50%, 1);" --> | <math>e_1</math> | width="30pt" <!-- style="color: black; background-color: hsla( 16, 100%, 50%, 1);" --> | <math>e_2</math> | width="30pt" <!-- style="color: black; background-color: hsla( 32, 100%, 50%, 1);" --> | <math>e_3</math> | width="30pt" <!-- style="color: black; background-color: hsla( 48, 100%, 50%, 1);" --> | <math>e_4</math> | width="30pt" <!-- style="color: black; background-color: hsla( 64, 100%, 50%, 1);" --> | <math>e_5</math> | width="30pt" <!-- style="color: black; background-color: hsla( 80, 100%, 50%, 1);" --> | <math>e_6</math> | width="30pt" <!-- style="color: black; background-color: hsla( 96, 100%, 50%, 1);" --> | <math>e_7</math> | width="30pt" <!-- style="color: black; background-color: hsla(112, 100%, 50%, 1);" --> | <math>e_8</math> | width="30pt" <!-- style="color: black; background-color: hsla(128, 100%, 50%, 1);" --> | <math>e_9</math> | width="30pt" <!-- style="color: black; background-color: hsla(144, 100%, 50%, 1);" --> | <math>e_{10}</math> | width="30pt" <!-- style="color: black; background-color: hsla(160, 100%, 50%, 1);" --> | <math>e_{11}</math> | width="30pt" <!-- style="color: black; background-color: hsla(176, 100%, 50%, 1);" --> | <math>e_{12}</math> | width="30pt" <!-- style="color: black; background-color: hsla(192, 100%, 50%, 1);" --> | <math>e_{13}</math> | width="30pt" <!-- style="color: black; background-color: hsla(208, 100%, 50%, 1);" --> | <math>e_{14}</math> | width="30pt" <!-- style="color: black; background-color: hsla(224, 100%, 50%, 1);" --> | <math>e_{15}</math> |- ! <math>e_1</math> | <math>e_1</math> | <math>-e_0</math> | <math>e_3</math> | <math>-e_2</math> | <math>e_5</math> | <math>-e_4</math> | <math>-e_7</math> | <math>e_6</math> | <math>e_9</math> | <math>-e_8</math> | <math>-e_{11}</math> | <math>e_{10}</math> | <math>-e_{13}</math> | <math>e_{12}</math> | <math>e_{15}</math> | <math>-e_{14}</math> |- ! <math>e_2</math> | <math>e_2</math> | <math>-e_3</math> | <math>-e_0</math> | <math>e_1</math> | <math>e_6</math> | <math>e_7</math> | <math>-e_4</math> | <math>-e_5</math> | <math>e_{10}</math> | <math>e_{11}</math> | <math>-e_8</math> | <math>-e_9</math> | <math>-e_{14}</math> | <math>-e_{15}</math> | <math>e_{12}</math> | <math>e_{13}</math> |- ! <math>e_3</math> | <math>e_3</math> | <math>e_2</math> | <math>-e_1</math> | <math>-e_0</math> | <math>e_7</math> | <math>-e_6</math> | <math>e_5</math> | <math>-e_4</math> | <math>e_{11}</math> | <math>-e_{10}</math> | <math>e_9</math> | <math>-e_8</math> | <math>-e_{15}</math> | <math>e_{14}</math> | <math>-e_{13}</math> | <math>e_{12}</math> |- ! <math>e_4</math> | <math>e_4</math> | <math>-e_5</math> | <math>-e_6</math> | <math>-e_7</math> | <math>-e_0</math> | <math>e_1</math> | <math>e_2</math> | <math>e_3</math> | <math>e_{12}</math> | <math>e_{13}</math> | <math>e_{14}</math> | <math>e_{15}</math> | <math>-e_8</math> | <math>-e_9</math> | <math>-e_{10}</math> | <math>-e_{11}</math> |- ! <math>e_5</math> | <math>e_5</math> | <math>e_4</math> | <math>-e_7</math> | <math>e_6</math> | <math>-e_1</math> | <math>-e_0</math> | <math>-e_3</math> | <math>e_2</math> | <math>e_{13}</math> | <math>-e_{12}</math> | <math>e_{15}</math> | <math>-e_{14}</math> | <math>e_9</math> | <math>-e_8</math> | <math>e_{11}</math> | <math>-e_{10}</math> |- ! <math>e_6</math> | <math>e_6</math> | <math>e_7</math> | <math>e_4</math> | <math>-e_5</math> | <math>-e_2</math> | <math>e_3</math> | <math>-e_0</math> | <math>-e_1</math> | <math>e_{14}</math> | <math>-e_{15}</math> | <math>-e_{12}</math> | <math>e_{13}</math> | <math>e_{10}</math> | <math>-e_{11}</math> | <math>-e_8</math> | <math>e_9</math> |- ! <math>e_7</math> | <math>e_7</math> | <math>-e_6</math> | <math>e_5</math> | <math>e_4</math> | <math>-e_3</math> | <math>-e_2</math> | <math>e_1</math> | <math>-e_0</math> | <math>e_{15}</math> | <math>e_{14}</math> | <math>-e_{13}</math> | <math>-e_{12}</math> | <math>e_{11}</math> | <math>e_{10}</math> | <math>-e_9</math> | <math>-e_8</math> |- ! <math>e_8</math> | <math>e_8</math> | <math>-e_9</math> | <math>-e_{10}</math> | <math>-e_{11}</math> | <math>-e_{12}</math> | <math>-e_{13}</math> | <math>-e_{14}</math> | <math>-e_{15}</math> | <math>-e_0</math> | <math>e_1</math> | <math>e_2</math> | <math>e_3</math> | <math>e_4</math> | <math>e_5</math> | <math>e_6</math> | <math>e_7</math> |- ! <math>e_9</math> | <math>e_9</math> | <math>e_8</math> | <math>-e_{11}</math> | <math>e_{10}</math> | <math>-e_{13}</math> | <math>e_{12}</math> | <math>e_{15}</math> | <math>-e_{14}</math> | <math>-e_1</math> | <math>-e_0</math> | <math>-e_3</math> | <math>e_2</math> | <math>-e_5</math> | <math>e_4</math> | <math>e_7</math> | <math>-e_6</math> |- ! <math>e_{10}</math> | <math>e_{10}</math> | <math>e_{11}</math> | <math>e_8</math> | <math>-e_9</math> | <math>-e_{14}</math> | <math>-e_{15}</math> | <math>e_{12}</math> | <math>e_{13}</math> | <math>-e_2</math> | <math>e_3</math> | <math>-e_0</math> | <math>-e_1</math> | <math>-e_6</math> | <math>-e_7</math> | <math>e_4</math> | <math>e_5</math> |- ! <math>e_{11}</math> | <math>e_{11}</math> | <math>-e_{10}</math> | <math>e_9</math> | <math>e_8</math> | <math>-e_{15}</math> | <math>e_{14}</math> | <math>-e_{13}</math> | <math>e_{12}</math> | <math>-e_3</math> | <math>-e_2</math> | <math>e_1</math> | <math>-e_0</math> | <math>-e_7</math> | <math>e_6</math> | <math>-e_5</math> | <math>e_4</math> |- ! <math>e_{12}</math> | <math>e_{12}</math> | <math>e_{13}</math> | <math>e_{14}</math> | <math>e_{15}</math> | <math>e_8</math> | <math>-e_9</math> | <math>-e_{10}</math> | <math>-e_{11}</math> | <math>-e_4</math> | <math>e_5</math> | <math>e_6</math> | <math>e_7</math> | <math>-e_0</math> | <math>-e_1</math> | <math>-e_2</math> | <math>-e_3</math> |- ! <math>e_{13}</math> | <math>e_{13}</math> | <math>-e_{12}</math> | <math>e_{15}</math> | <math>-e_{14}</math> | <math>e_9</math> | <math>e_8</math> | <math>e_{11}</math> | <math>-e_{10}</math> | <math>-e_5</math> | <math>-e_4</math> | <math>e_7</math> | <math>-e_6</math> | <math>e_1</math> | <math>-e_0</math> | <math>e_3</math> | <math>-e_2</math> |- ! <math>e_{14}</math> | <math>e_{14}</math> | <math>-e_{15}</math> | <math>-e_{12}</math> | <math>e_{13}</math> | <math>e_{10}</math> | <math>-e_{11}</math> | <math>e_8</math> | <math>e_9</math> | <math>-e_6</math> | <math>-e_7</math> | <math>-e_4</math> | <math>e_5</math> | <math>e_2</math> | <math>-e_3</math> | <math>-e_0</math> | <math>e_1</math> |- ! <math>e_{15}</math> | <math>e_{15}</math> | <math>e_{14}</math> | <math>-e_{13}</math> | <math>-e_{12}</math> | <math>e_{11}</math> | <math>e_{10}</math> | <math>-e_9</math> | <math>e_8</math> | <math>-e_7</math> | <math>e_6</math> | <math>-e_5</math> | <math>-e_4</math> | <math>e_3</math> | <math>e_2</math> | <math>-e_1</math> | <math>-e_0</math> |} === Sedenion properties === [[File:PG(3,2) g005.png|thumb|right|An illustration of the structure of [[PG(3,2)]] that provides the multiplication law for sedenions, as shown by {{harvtxt|Saniga|Holweck|Pracna|2015}}. Any three points (representing three sedenion imaginary units) lying on the same line are such that the product of two of them yields the third one, sign disregarded.]] From the above table, we can see that: :<math>e_0e_i = e_ie_0 = e_i \, \text{for all} \, i,</math> :<math>e_ie_i = -e_0 \,\, \text{for}\,\, i \neq 0,</math> and :<math>e_ie_j = -e_je_i \,\, \text{for}\,\, i \neq j \,\,\text{with}\,\, i,j \neq 0.</math> ==== Anti-associative ==== The sedenions are not fully anti-associative. Choose any four generators, <math>i,j,k</math> and <math>l</math>. The following 5-cycle shows that these five relations cannot all be anti-associative. <math display="block">(ij)(kl) = -((ij)k)l = (i(jk))l = -i((jk)l) = i(j(kl)) = -(ij)(kl) = 0</math> In particular, in the table above, using <math>e_1,e_2,e_4</math> and <math>e_8</math> the last expression associates. <math>(e_1e_2)e_{12} = e_1(e_2e_{12}) = -e_{15}</math> === Quaternionic subalgebras === The particular sedenion multiplication table shown above is represented by 35 triads. The table and its triads have been constructed from an [[octonion]] represented by the bolded set of 7 triads using [[Cayley–Dickson construction]]. It is one of 480 possible sets of 7 triads (one of two shown in the octonion article) and is the one based on the Cayley–Dickson construction of [[quaternions]] from two possible quaternion constructions from the [[complex numbers]]. The binary representations of the indices of these triples [[bitwise XOR]] to 0. These 35 triads are: { '''{1, 2, 3}''', '''{1, 4, 5}''', '''{1, 7, 6}''', {1, 8, 9}, {1, 11, 10}, {1, 13, 12}, {1, 14, 15}, <br /> '''{2, 4, 6}''', '''{2, 5, 7}''', {2, 8, 10}, {2, 9, 11}, {2, 14, 12}, {2, 15, 13}, '''{3, 4, 7}''', <br /> '''{3, 6, 5}''', {3, 8, 11}, {3, 10, 9}, {3, 13, 14}, {3, 15, 12}, {4, 8, 12}, {4, 9, 13}, <br /> {4, 10, 14}, {4, 11, 15}, {5, 8, 13}, {5, 10, 15}, {5, 12, 9}, {5, 14, 11}, {6, 8, 14}, <br /> {6, 11, 13}, {6, 12, 10}, {6, 15, 9}, {7, 8, 15}, {7, 9, 14}, {7, 12, 11}, {7, 13, 10} } === Zero divisors === The list of 84 sets of zero divisors <math>\{e_a, e_b, e_c, e_d\}</math>, where <math>(e_a + e_b) \circ (e_c + e_d) = 0</math>: <math display="block">\begin{array}{c} \text{Sedenion Zero Divisors} \quad \{ e_a, e_b, e_c, e_d \} \\ \text{where} ~ (e_a + e_b) \circ (e_c + e_d) = 0 \\ \begin{array}{ccc} 1 \leq a \leq 6, & c > a, & 9 \leq b \leq 15 \\ \end{array} \\ \\ \begin{array}{lccr} \{ 9 \leq d \leq 15 \} & \{ -9 \geq d \geq -15 \} & \{ 9 \leq d \leq 15 \} & \{ -9 \geq d \geq -15 \}\\ \end{array} \\ \\ \begin{array}{lccr} \{e_1, e_{10}, e_5, e_{14}\} & \{e_1, e_{10}, e_4, -e_{15}\} & \{e_1, e_{10}, e_7, e_{12}\} & \{e_1, e_{10}, e_6, -e_{13}\} \\ \{e_1, e_{11}, e_4, e_{14}\} & \{e_1, e_{11}, e_6, -e_{12}\} & \{e_1, e_{11}, e_5, e_{15}\} & \{e_1, e_{11}, e_7, -e_{13}\} \\ \{e_1, e_{12}, e_2, e_{15}\} & \{e_1, e_{12}, e_3, -e_{14}\} & \{e_1, e_{12}, e_6, e_{11}\} & \{e_1, e_{12}, e_7, -e_{10}\} \\ \{e_1, e_{13}, e_6, e_{10}\} & \{e_1, e_{13}, e_2, -e_{14}\} & \{e_1, e_{13}, e_7, e_{11}\} & \{e_1, e_{13}, e_3, -e_{15}\} \\ \{e_1, e_{14}, e_2, e_{13}\} & \{e_1, e_{14}, e_4, -e_{11}\} & \{e_1, e_{14}, e_3, e_{12}\} & \{e_1, e_{14}, e_5, -e_{10}\} \\ \{e_1, e_{15}, e_3, e_{13}\} & \{e_1, e_{15}, e_2, -e_{12}\} & \{e_1, e_{15}, e_4, e_{10}\} & \{e_1, e_{15}, e_5, -e_{11}\} \\ \\ \{e_2, e_9, e_4, e_{15}\} & \{e_2, e_9, e_5, -e_{14}\} & \{e_2, e_9, e_6, e_{13}\} & \{e_2, e_9, e_7, -e_{12}\} \\ \{e_2, e_{11}, e_5, e_{12}\} & \{e_2, e_{11}, e_4, -e_{13}\} & \{e_2, e_{11}, e_6, e_{15}\} & \{e_2, e_{11}, e_7, -e_{14}\} \\ \{e_2, e_{12}, e_3, e_{13}\} & \{e_2, e_{12}, e_5, -e_{11}\} & \{e_2, e_{12}, e_7, e_9 \} & \{e_2, e_{13}, e_3, -e_{12}\} \\ \{e_2, e_{13}, e_4, e_{11}\} & \{e_2, e_{13}, e_6, -e_9 \} & \{e_2, e_{14}, e_5, e_9 \} & \{e_2, e_{14}, e_3, -e_{15}\} \\ \{e_2, e_{14}, e_7, e_{11}\} & \{e_2, e_{15}, e_4, -e_9 \} & \{e_2, e_{15}, e_3, e_{14}\} & \{e_2, e_{15}, e_6, -e_{11}\} \\ \\ \{e_3, e_9, e_6, e_{12}\} & \{e_3, e_9, e_4, -e_{14}\} & \{e_3, e_9, e_7, e_{13}\} & \{e_3, e_9, e_5, -e_{15}\} \\ \{e_3, e_{10}, e_4, e_{13}\} & \{e_3, e_{10}, e_5, -e_{12}\} & \{e_3, e_{10}, e_7, e_{14}\} & \{e_3, e_{10}, e_6, -e_{15}\} \\ \{e_3, e_{12}, e_5, e_{10}\} & \{e_3, e_{12}, e_6, -e_9 \} & \{e_3, e_{14}, e_4, e_9 \} & \{e_3, e_{13}, e_4, -e_{10}\} \\ \{e_3, e_{15}, e_5, e_9 \} & \{e_3, e_{13}, e_7, -e_9 \} & \{e_3, e_{15}, e_6, e_{10}\} & \{e_3, e_{14}, e_7, -e_{10}\} \\ \\ \{e_4, e_9, e_7, e_{10}\} & \{e_4, e_9, e_6, -e_{11}\} & \{e_4, e_{10}, e_5, e_{11}\} & \{e_4, e_{10}, e_7, -e_9 \} \\ \{e_4, e_{11}, e_6, e_9 \} & \{e_4, e_{11}, e_5, -e_{10}\} & \{e_4, e_{13}, e_6, e_{15}\} & \{e_4, e_{13}, e_7, -e_{14}\} \\ \{e_4, e_{14}, e_7, e_{13}\} & \{e_4, e_{14}, e_5, -e_{15}\} & \{e_4, e_{15}, e_5, e_{14}\} & \{e_4, e_{15}, e_6, -e_{13}\} \\ \\ \{e_5, e_{10}, e_6, e_9 \} & \{e_5, e_9, e_6, -e_{10}\} & \{e_5, e_{11}, e_7, e_9 \} & \{e_5, e_9, e_7, -e_{11}\} \\ \{e_5, e_{12}, e_7, e_{14}\} & \{e_5, e_{12}, e_6, -e_{15}\} & \{e_5, e_{15}, e_6, e_{12}\} & \{e_5, e_{14}, e_7, -e_{12}\} \\ \\ \{e_6, e_{11}, e_7, e_{10}\} & \{e_6, e_{10}, e_7, -e_{11}\} & \{e_6, e_{13}, e_7, e_{12}\} & \{e_6, e_{12}, e_7, -e_{13}\} \end{array} \end{array}</math> == Applications == {{harvtxt|Moreno|1998}} showed that the space of pairs of norm-one sedenions that multiply to zero is [[homeomorphism|homeomorphic]] to the compact form of the exceptional [[Lie group]] [[G2 (mathematics)|G<sub>2</sub>]]. (Note that in his paper, a "zero divisor" means a ''pair'' of elements that multiply to zero.) {{harvtxt|Guillard|Gresnigt|2019}} demonstrated that the three generations of [[lepton]]s and [[quark]]s that are associated with unbroken [[gauge symmetry]] <math>\mathrm {SU(3)_{c} \times U(1)_{em}}</math> can be represented using the algebra of the complexified sedenions <math>\mathbb {C \otimes S}</math>. Their reasoning follows that a primitive [[idempotent]] [[Projection (linear algebra)|projector]] <math>\rho_{+} = 1/2(1+ie_{15})</math> — where <math>e_{15}</math> is chosen as an [[imaginary unit]] akin to <math>e_{7}</math> for <math>\mathbb {O}</math> in the [[Fano plane]] — that [[Group action|acts]] on the [[standard basis]] of the sedenions uniquely divides the algebra into three sets of [[Split-complex number|split basis]] elements for <math>\mathbb {C \otimes O}</math>, whose adjoint [[Group action#Left group action|left actions]] ''on themselves'' generate three copies of the [[Clifford algebra]] <math>\mathrm Cl(6)</math> which in-turn contain [[Ideal (ring theory)#Types of ideals|minimal left ideals]] that describe a single generation of [[fermion]]s with unbroken <math>\mathrm {SU(3)_{c} \times U(1)_{em}}</math> gauge symmetry. In particular, they note that [[tensor product]]s between normed division algebras generate zero divisors akin to those inside <math>\mathbb {S}</math>, where for <math>\mathbb {C \otimes O}</math> the lack of alternativity and associativity does not affect the construction of minimal left ideals since their underlying split basis requires only two basis elements to be multiplied together, in-which associativity or alternativity are uninvolved. Still, these ideals constructed from an adjoint algebra of left actions of the algebra on itself remain associative, alternative, and [[isomorphic]] to a Clifford algebra. Altogether, this permits three copies of <math>(\mathbb {C \otimes O})_{L} \cong \mathrm {Cl(6)}</math> to exist inside <math>\mathbb {(C \otimes S)}_{L}</math>. Furthermore, these three complexified octonion subalgebras are not independent; they share a common <math>\mathrm Cl(2)</math> subalgebra, which the authors note could form a theoretical basis for [[Cabibbo–Kobayashi–Maskawa matrix|CKM]] and [[Pontecorvo–Maki–Nakagawa–Sakata matrix|PMNS]] matrices that, respectively, describe [[quark mixing]] and [[neutrino oscillation]]s. Sedenion neural networks provide{{Explain|date=August 2022}} a means of efficient and compact expression in machine learning applications and have been used in solving multiple time-series and traffic forecasting problems.<ref>{{Cite journal|last1=Saoud|first1=Lyes Saad|last2=Al-Marzouqi|first2=Hasan|date=2020|title=Metacognitive Sedenion-Valued Neural Network and its Learning Algorithm|journal=IEEE Access|volume=8|pages=144823–144838|doi=10.1109/ACCESS.2020.3014690|issn=2169-3536|doi-access=free}}</ref><ref>{{Cite journal |last1=Kopp |first1=Michael |last2=Kreil |first2=David |last3=Neun |first3=Moritz |last4=Jonietz |first4=David |last5=Martin |first5=Henry |last6=Herruzo |first6=Pedro |last7=Gruca |first7=Aleksandra |last8=Soleymani |first8=Ali |last9=Wu |first9=Fanyou |last10=Liu |first10=Yang |last11=Xu |first11=Jingwei |date=2021-08-07 |title=Traffic4cast at NeurIPS 2020 – yet more on the unreasonable effectiveness of gridded geo-spatial processes |url=https://proceedings.mlr.press/v133/kopp21a.html |journal=NeurIPS 2020 Competition and Demonstration Track |language=en |publisher=PMLR |pages=325–343}}</ref> == See also == * [[Pfister's sixteen-square identity]] * [[Split-complex number]] * [[PG(3,2)]] == Notes == {{Reflist}} == References == * {{Cite journal | last1=Imaeda | first1=K. | last2=Imaeda | first2=M. | title=Sedenions: algebra and analysis | doi=10.1016/S0096-3003(99)00140-X | mr=1786945 | year=2000 | journal=Applied Mathematics and Computation | volume=115 | issue=2 | pages=77–88}} * {{Cite journal | last1 = Baez | first1 = John C. | author-link = John Baez| title = The Octonions | journal = Bulletin of the American Mathematical Society |series=New Series | volume = 39 | issue = 2 | pages = 145–205 | year = 2002 | url = http://math.ucr.edu/home/baez/octonions/ | doi = 10.1090/S0273-0979-01-00934-X | arxiv = math/0105155| mr = 1886087 | s2cid = 586512 }} * {{cite journal |last1=Biss |first1=Daniel K. |last2=Christensen |first2=J. Daniel |last3=Dugger |first3=Daniel |last4=Isaksen |first4=Daniel C.|date=2007 |title=Large annihilators in Cayley-Dickson algebras II |journal=Boletin de la Sociedad Matematica Mexicana |volume=3 |pages=269–292 |arxiv=math/0702075|bibcode=2007math......2075B }} * {{cite journal |last1=Guillard |first=Adam B. |last2=Gresnigt |first2=Niels G. |title=Three fermion generations with two unbroken gauge symmetries from the complex sedenions |url=https://link.springer.com/article/10.1140/epjc/s10052-019-6967-1 |journal=[[The European Physical Journal C]] |publisher=[[Springer Science+Business Media|Springer]] |volume=79 |issue=5 |year=2019 |pages= 1–11 (446) |doi=10.1140/epjc/s10052-019-6967-1 |bibcode=2019EPJC...79..446G |s2cid=102351250 |arxiv=1904.03186 }} * {{cite journal |first1=M.K. |last1=Kinyon |last2=Phillips |first2=J.D. |last3=Vojtěchovský |first3=P. |title=C-loops: Extensions and constructions |journal=Journal of Algebra and Its Applications |volume=6 |issue=1 |pages=1–20 |year=2007 |doi=10.1142/S0219498807001990 |arxiv=math/0412390|citeseerx=10.1.1.240.6208 |s2cid=48162304 }} * {{cite journal |first1=Benard M. |last1=Kivunge |last2=Smith |first2=Jonathan D. H |title=Subloops of sedenions |journal=Comment. Math. Univ. Carolinae |volume=45 |issue=2 |pages=295–302 |year=2004 |url=http://www.emis.de/journals/CMUC/pdf/cmuc0402/kivunge.pdf }} *{{Cite journal | last1=Moreno | first1=Guillermo | title=The zero divisors of the Cayley–Dickson algebras over the real numbers | arxiv=q-alg/9710013 | mr=1625585 | year=1998 | journal= Bol. Soc. Mat. Mexicana |series=Series 3| volume=4 | issue=1 | pages=13–28| bibcode=1997q.alg....10013G }} * {{cite journal | last=Saniga | first=Metod | last2=Holweck | first2=Frédéric | last3=Pracna | first3=Petr | title=From Cayley-Dickson Algebras to Combinatorial Grassmannians | journal=Mathematics | publisher=MDPI AG | volume=3 | issue=4 | date=2015 | issn=2227-7390 | arxiv=1405.6888 | doi=10.3390/math3041192 | doi-access=free | pages=1192–1221}} {{Creative Commons text attribution notice|cc=by4|from this source=yes}} *{{Cite journal | last1=Smith | first1=Jonathan D. H. | title=A left loop on the 15-sphere | doi=10.1006/jabr.1995.1237 | mr=1345298 | year=1995 | journal=[[Journal of Algebra]] | volume=176 | issue=1 | pages=128–138| doi-access=free }} *L. S. Saoud and H. Al-Marzouqi, "Metacognitive Sedenion-Valued Neural Network and its Learning Algorithm," in IEEE Access, vol. 8, pp. 144823-144838, 2020, [[doi:10.1109/ACCESS.2020.3014690]]. {{Number systems}} {{Dimension topics}} {{Authority control}} [[Category:Sedenions| ]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Authority control
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Creative Commons text attribution notice
(
edit
)
Template:Dimension topics
(
edit
)
Template:Explain
(
edit
)
Template:Harv
(
edit
)
Template:Harvtxt
(
edit
)
Template:Infobox number system
(
edit
)
Template:Math
(
edit
)
Template:Number systems
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Search
Search
Editing
Sedenion
Add topic