Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Road transport
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Collective term for all forms of transport which takes place on roads}} {{Refimprove|date=January 2007}} {{multiple image|perrow = 2/2/2/2/2|total_width=390 | image1 = Nissan Tsuru taxi Mexico Ciudad.jpg | image2 = Left side of Flying Pigeon.jpg | image3 = | image4 = Fuel truck tanzania.jpg | footer = Examples of road transport: [[Nissan Tsuru|Nissan Tsuru (B13)]] (a car), [[Flying Pigeon]] [[roadster (bicycle)|roadster]] (a bike), [[MAZ-303]] (a bus), [[Scania R-series|Scania R440]] (a truck).}} {{transport}} '''Road transport''' or '''road transportation''' is a type of transport using [[roads]].<ref>{{Cite web |title=What is 'Road Transport' |url=https://economictimes.indiatimes.com/defaultinterstitial.cms |access-date=2024-03-15 |website=The Economic Times}}</ref> Transport on roads can be roughly grouped into the transportation of goods and transportation of people. In many countries licensing requirements and safety regulations ensure a separation of the two industries. Movement along roads may be by [[Bicycle|bike]], [[Car|automobile]], [[bus]], [[truck]], or by [[Pack animal|animal]] such as [[horse]] or [[ox]]en. Standard networks of roads were adopted by [[Ancient Rome|Romans]], [[Persians]], [[Aztec]], and other early [[empire]]s, and may be regarded as a feature of empires. [[Cargo]] may be transported by [[Truck driver|trucking companies]], while passengers may be transported via [[Public transport|mass transit]]. Commonly defined features of modern roads include defined [[lanes]] and [[Traffic sign|signage]]. Various classes of road exist, from two-lane local roads with at-grade [[Intersection (road)|intersection]]s to [[controlled-access highway]]s with all cross traffic grade-separated. The nature of road transportation of goods depends on, apart from the degree of development of the local infrastructure, the distance the goods are transported by road, the weight and volume of an individual shipment, and the type of goods transported. For short distances and light small shipments, a [[van]] or [[pickup truck]] may be used. For large shipments even if less than a full truckload a truck is more appropriate. (Also see Trucking and Hauling below). In some countries [[cargo]] is transported by road in horse-drawn carriages, donkey [[cart]]s or other non-motorized mode. Delivery services are sometimes considered a separate category from cargo transport. In many places, fast food is transported on roads by various types of [[vehicle]]s. For inner city delivery of small packages and documents [[bike courier]]s are quite common. People are transported on roads. Special modes of individual transport by road such as [[cycle rickshaw]]s may also be locally available. There are also specialist modes of road transport for particular situations, such as ambulances. ==History== {{main|History of road transport}} ===Early roads=== [[Image:Metopa Columna lui Traian Constructie drum.jpg|thumb|right|Road construction, depicted on [[Trajan's Column]].]] The first methods of road transport were [[horse]]s, [[ox]]en or even humans carrying goods over [[Soil|dirt tracks]] that often followed [[Game (food)|game]] [[trail]]. The [[Persian Empire|Persians]] later built a network of [[Royal Road]]s across their empire. With the advent of the [[Roman Empire]], there was a need for armies to be able to travel quickly from one region to another, and the roads that existed were often muddy, which greatly delayed the movement of [[Roman army|large masses of troops]]. To resolve this issue, the Romans built solid and lasting roads. The [[Roman road]]s used deep roadbeds of crushed stone as an underlying layer to ensure that they kept dry, as the water would flow out from the crushed stone, instead of becoming mud in clay soils. The Islamic [[Caliphate]] later built [[Tarmacadam|tar-paved]] roads in [[Baghdad]].<ref>{{cite web|url=http://www.americanautomove.com/information/road-transportation-a-history-and-how-we-use-it-today/|title=Road Transportation – A History and How We Use it Today|date=30 August 2012|publisher=American Auto Move|access-date=12 September 2012|archive-date=9 September 2013|archive-url=https://web.archive.org/web/20130909103136/http://www.americanautomove.com/information/road-transportation-a-history-and-how-we-use-it-today/|url-status=live}}</ref> ===New road networks=== As states developed and became richer, especially with the [[Renaissance]], new roads and bridges began to be built, often based on Roman designs. Although there were attempts to rediscover Roman methods, there was little useful innovation in road building before the 18th century. [[File:Highgate wide.jpg|thumb|The [[Great North Road (Great Britain)|Great North Road]] near High gate on the approach to London before [[turnpiking]]. The highway was deeply rutted and spread onto adjoining land.]] Starting in the early 18th century, the [[British Parliament]] began to pass a series of [[Act of Parliament|acts]] that gave the local justices powers to erect toll-gates on the roads, in exchange for professional upkeep.<ref name=webb157 >Webb. English Local Government. pp. 157-159</ref><ref>Statute [[15 Cha. 2]]. c. 1.</ref> The toll-gate erected at Wade's Mill became the first effective toll-gate in England. The first scheme that had trustees who were not justices was established through a turnpike act{{which|date=January 2024}} in 1707, for a section of the London-[[Chester, England|Chester]] road between Foothill and [[Stony Stafford]]. The basic principle was that the trustees would manage resources from the several parishes through which the highway passed, augment this with tolls from users from outside the parishes and apply the whole to the maintenance of the main highway. This became the pattern for the turnpiking of a growing number of highways, sought by those who wished to improve flow of commerce through their part of a county.<ref name=webb157 /> In 18th century [[West Africa]], road transport throughout the [[Ashanti Empire]] was maintained via a [[Roads of the Ashanti Empire|network of well-kept roads]] that connected the Ashanti capital with territories within its jurisdiction and influence.<ref>{{cite book|url=https://books.google.com/books?id=7_qNAgAAQBAJ&dq=Asante+great+roads&pg=PA73|last1=Thornton|first1=John Kelly|author-link=John Thornton (historian)|year=1999|title=Warfare in Atlantic Africa, 1500-1800|page=73|publisher=[[Routledge]]|isbn=9781135365844|access-date=2023-02-22|archive-date=2023-04-11|archive-url=https://web.archive.org/web/20230411081922/https://books.google.com/books?id=7_qNAgAAQBAJ&dq=Asante+great+roads&pg=PA73|url-status=live}}</ref><ref>{{cite book|last1=Eisenstadt|first1=Shmuel Noah.|author-link1=Shmuel Eisenstadt|last2=Abitbol|first2=Michael|last3=Chazan|first3=Naomi| author-link3= Naomi Chazan| title= The Early State in African Perspective: Culture, Power, and Division of Labor|url= https://books.google.com/books?id=ec8J7IJ6lIsC&dq=Asante+Empire+eight+roads&pg=PA86|year=1988|publisher=[[Brill Publishers|Brill]]|pages=86|isbn= 9004083553}}</ref> After significant road construction undertaken by the kingdom of [[Dahomey]], [[toll road]]s were established with the function of collecting yearly taxes based on the goods carried by the people of Dahomey and their occupation.<ref name="Herskovits (Vol. I)">{{cite book|last=Herskovits|first=Melville J.|title=Dahomey: An Ancient West African Kingdom|year=1967|publisher=Northwestern University Press|location=Evanston, IL|edition=Volume I}}</ref> The Royal Road was built in the late 18th century by King [[Kpengla]] which stretched from [[Abomey]] through [[Cana, Benin|Cana]] up to [[Ouidah]].<ref>{{cite journal | last=Alpern|first= Stanley B. | title=Dahomey's Royal Road | journal=History in Africa| volume=26 | pages=11–24| year=1999 | jstor=3172135| doi=10.2307/3172135 |s2cid= 161238713 }}</ref> The quality of early turnpike roads was varied.<ref>''Parliamentary Papers'', 1840, Vol 256 xxvii.</ref> Although turnpiking did result in some improvement to each highway, the technologies used to deal with geological features, drainage, and the effects of weather were all in their infancy. [[Road construction]] improved slowly, initially through the efforts of individual surveyors such as [[John Metcalf (civil engineer)|John Metcalf]] in [[Yorkshire]] in the 1760s.<ref>[http://www.schoolshistory.org.uk/IndustrialRevolution/transport/roads.htm The Turnpike Trust] {{Webarchive|url=https://web.archive.org/web/20140525232850/http://www.schoolshistory.org.uk/IndustrialRevolution/transport/roads.htm |date=2014-05-25 }} Schools History.org, Accessed July 2011</ref> British turnpike builders began to realize the importance of selecting clean stones for surfacing while excluding vegetable material and clay, resulting in more durable roads.{{sfn|Lay|1992|p=72}}<ref>{{cite web|last=Oxford|first=Robert|title=How old is that route?|publisher=[[Institution of Civil Engineers]]|date=3 September 2003|url=http://www.ice.org.uk/downloads//BS-History_of_Routes.pdf|access-date=2007-01-19|url-status=dead|archive-url=https://web.archive.org/web/20070927213746/http://www.ice.org.uk/downloads//BS-History_of_Routes.pdf|archive-date=27 September 2007}}</ref> ===Industrial civil engineering=== [[File:ThomasTelford.jpg|thumb|right|[[Thomas Telford]], the "Colossus of the Roads" in early 19th century Britain.]] By the late 18th and early 19th centuries, new methods of highway construction had been pioneered by the work of three British engineers, [[John Metcalf (civil engineer)|John Metcalf]], [[Thomas Telford]] and [[John Loudon McAdam]], and by the French road engineer [[Pierre-Marie-Jérôme Trésaguet]]. The first professional road builder to emerge during the [[Industrial Revolution]] was [[John Metcalf (civil engineer)|John Metcalf]], who constructed about {{convert|180|mi|km}} of [[turnpike trust|turnpike road]], mainly in the north of England, from 1765. He believed a good road should have good foundations, be well drained and have a smooth [[convex geometry|convex]] surface to allow [[Rain|rainwater]] to drain quickly into ditches at the side. He understood the importance of good drainage, knowing it was rain that caused most problems on the roads. [[Pierre-Marie-Jérôme Trésaguet]] established the first [[scientific method|scientific approach]] to [[road building]] in France at the same time. He wrote a memorandum on his method in 1775, which became general practice in France. It involved a layer of large rocks, covered by a layer of smaller gravel. The lower layer improved on Roman practice in that it was based on the understanding that the purpose of this layer (the sub-base or [[base course]]) is to transfer the weight of the road and its traffic to the ground, while protecting the ground from deformation by spreading the weight evenly. Therefore, the sub-base did not have to be a self-supporting structure. The upper running surface provided a smooth surface for vehicles while protecting the large stones of the sub-base. The surveyor and engineer [[Thomas Telford]] also made substantial advances in the engineering of new roads and the construction of bridges. His method of road building involved the digging of a large trench in which a foundation of heavy rock was set. He also designed his roads so that they sloped downwards from the centre, allowing drainage to take place, a major improvement on the work of Trésaguet. The surface of his roads consisted of broken stone. He also improved on methods for the building of roads by improving the selection of stone based on thickness, taking into account traffic, alignment and slopes. During his later years, Telford was responsible for rebuilding sections of the [[Watling Street|London to Holyhead road]], a task completed by his assistant of ten years, [[John Benjamin Macneill|John MacNeill]].<ref>{{cite web|first=Mary|last=Bellis|title=Thomas Telford|work=About: inventors|publisher=About, Inc, [[New York Times]]|year=2007|url=http://inventors.about.com/od/tstartinventors/a/Thomas_Telford.htm|archive-url=https://archive.today/20120630042714/http://inventors.about.com/od/tstartinventors/a/Thomas_Telford.htm|url-status=dead|archive-date=June 30, 2012|access-date=2007-01-19}}</ref> [[Image:Rakeman – First American Macadam Road.jpg|thumb|Construction of the first macadamized road in the United States (1823). In the foreground, workers are breaking stones "so as not to exceed 6 ounces in weight or to pass a two-inch ring".<ref name=rakemanPainting>[https://www.fhwa.dot.gov/rakeman/1823.htm "1823 - First American Macadam Road"] ''(Painting - [[Carl Rakeman]])'' US Department of Transportation - Federal Highway Administration (Accessed 2008-10-10)</ref>]] It was another Scottish engineer, [[John Loudon McAdam]], who designed the first modern roads. He developed an inexpensive paving material of soil and stone aggregate (known as [[macadam]]). His road building method was simpler than Telford's, yet more effective at protecting roadways: he discovered that massive foundations of rock upon rock were unnecessary, and asserted that native soil alone would support the road and traffic upon it, as long as it was covered by a road crust that would protect the soil underneath from water and wear.<ref name=ColossusofRoads>{{citation|author=Craig, David|title=The Colossus of Roads|work=Palimpsest|publisher=Strum.co.uk|url=http://www.strum.co.uk/palimps/macadam.htm|access-date=18 June 2010|archive-date=14 November 2020|archive-url=https://web.archive.org/web/20201114110349/http://www.strum.co.uk/palimps/macadam.htm|url-status=live}}</ref> Also unlike Telford and other road builders, McAdam laid his roads as level as possible. His {{convert|30|ft|m|0|adj=mid|-wide}} road required only a rise of three inches from the edges to the center. Cambering and elevation of the road above the water table enabled rainwater to run off into ditches on either side.<ref name=McAdam1824p38>McAdam (1824), p.38</ref> Size of stones was central to the McAdam's road building theory. The lower {{convert|200|mm|in|0|adj=on}} road thickness was restricted to stones no larger than {{convert|75|mm|in}}. The upper {{convert|50|mm|in|0|adj=on}} layer of stones was limited to {{convert|20|mm|in|0}} size and stones were checked by supervisors who carried scales. A workman could check the stone size himself by seeing if the stone would fit into his mouth. The importance of the 20 mm stone size was that the stones needed to be much smaller than the 100 mm width of the iron [[carriage]] [[tyres]] that traveled on the road. Macadam roads were being built widely in the United States and Australia in the 1820s and in Europe in the 1830s and 1840s.{{sfn|Lay|1992|p=83}} ===20th century=== [[File:All of early 20th century transport is here… (12202409055).jpg|thumb|Modes of road transport in Dublin, 1929]] Macadam roads were adequate for use by horses and carriages or coaches, but they were very dusty and subject to erosion with heavy rain. The [[Good Roads Movement]] occurred in the United States between the late 1870s and the 1920s. Advocates for improved roads led by bicyclists turned local agitation into a national political movement. Outside cities, roads were dirt or gravel; mud in the winter and dust in the summer. Early organizers cited Europe where [[road construction]] and maintenance was supported by national and local governments. In its early years, the main goal of the movement was education for road building in [[Rural America|rural areas]] between cities and to help rural populations gain the social and economic benefits enjoyed by cities where citizens benefited from railroads, trolleys and paved streets. Even more than traditional vehicles, the newly invented bicycles could benefit from good country roads. Later on, they did not hold up to higher-speed motor vehicle use. Methods to stabilise [[Macadam|macadam roads]] with tar date back to at least 1834 when John Henry Cassell, operating from ''Cassell's Patent Lava Stone Works'' in [[Millwall]], patented "Pitch Macadam".<ref>[http://www.british-history.ac.uk/report.aspx?compid=46514 From: 'Northern Millwall: Tooke Town', Survey of London: volumes 43 and 44: Poplar, Blackwall and Isle of Dogs (1994), pp. 423-433] {{Webarchive|url=https://web.archive.org/web/20140116132610/http://www.british-history.ac.uk/report.aspx?compid=46514 |date=2014-01-16 }} Date accessed: 24 May 2009</ref> This method involved spreading tar on the [[subgrade]], placing a typical macadam layer, and finally sealing the macadam with a mixture of tar and sand. Tar-grouted macadam was in use well before 1900 and involved scarifying the surface of an existing macadam pavement, spreading tar, and re-compacting. Although the use of tar in road construction was known in the 19th century, it was little used and was not introduced on a large scale until the motorcar arrived on the scene in the early 20th century. Modern tarmac was patented by British civil engineer [[Edgar Purnell Hooley]], who noticed that spilled tar on the roadway kept the dust down and created a smooth surface.<ref name=Morton2002>{{citation |year=2002 |author=Ralph Morton|title=Construction UK: Introduction to the Industry| place=Oxford |publisher=Blackwell Science|page=51 |isbn=0-632-05852-8 |url=https://books.google.com/books?id=cW4CRawd1TgC&q=%22Edgar+Hooley%22&pg=PA51|access-date=22 June 2010}}. (Details of this story vary a bit, but the essence of is the same, as are the basic facts).</ref> He took out a patent in 1901 for tarmac.<ref name=Harrison2004>{{citation |year=2004 |author=Harrison, Ian |title=The Book of Inventions |place=Washington, DC |publisher=[[National Geographic Society]] |page=277 |isbn=978-0-7922-8296-9 |url=https://books.google.com/books?id=n4NGAAAAYAAJ&q=%22Tarmac+1902+Edgar+Purnell+Hooley+(England)+Patent+no:+GB+7796/1902+%26+US%22 |access-date=23 June 2010 |archive-date=9 September 2021 |archive-url=https://web.archive.org/web/20210909185050/https://books.google.com/books?id=n4NGAAAAYAAJ&q=%22Tarmac+1902+Edgar+Purnell+Hooley+(England)+Patent+no:+GB+7796/1902+%26+US%22 |url-status=live }}</ref> Hooley's 1901 patent involved mechanically mixing tar and aggregate prior to lay-down and then compacting the mixture with a [[steamroller]]. The tar was modified by adding small amounts of [[Portland cement]], [[resin]], and [[pitch (resin)|pitch]].<ref>Hooley, E. Purnell, {{US patent|765975}}, "Apparatus for the preparation of tar macadam", July 26, 1904</ref> [[File:Autostrada between Varese and Como.jpg|thumb|right|The Italian ''[[Autostrada dei Laghi]]'' ("Lakes Motorway" in the 1950s; now parts of the [[Autostrada A8 (Italy)|Autostrada A8]] and the [[Autostrada A9 (Italy)|Autostrada A9]]), the first [[controlled-access highway]] ever built in the world<ref name="independent"/><ref name="motorwebmuseum"/>]] The first version of modern [[controlled-access highway]]s evolved during the first half of the 20th century. The [[Long Island Motor Parkway]] on [[Long Island]], [[New York (state)|New York]], opened in 1908 as a private venture, was the world's first limited-access roadway. It included many modern features, including [[banked turn]]s, [[guard rail]]s and reinforced concrete [[Asphalt concrete|tarmac]].<ref name="NYT_LIMP">{{cite news |last = Patton |first = Phil |date = 9 October 2008 |title = A 100-Year-Old Dream: A Road Just for Cars |work = The New York Times <!-- |access-date = 16 September 2009--> }}</ref> Traffic could turn left between the parkway and connectors, crossing oncoming traffic, so it was not a controlled-access highway (or "freeway" as later defined by the federal government's [[Manual on Uniform Traffic Control Devices]]). Modern controlled-access highways originated in the early 1920s in response to the rapidly increasing use of the [[automobile]], the demand for faster movement between cities and as a consequence of improvements in paving processes, techniques and materials. These original high-speed roads were referred to as "[[dual highway]]s" and have been modernized and are still in use today. Italy was the first country in the world to build controlled-access highways reserved for fast traffic and for motor vehicles only.<ref name=independent>{{Cite news |first=Thea |last=Lenarduzzi |url=http://www.independent.co.uk/travel/europe/the-worlds-first-motorway-piero-puricellis-masterpiece-is-the-focus-of-an-unlikely-pilgrimage-a6840816.html|title=The motorway that built Italy: Piero Puricelli's masterpiece|date=30 January 2016|newspaper=[[The Independent]]|access-date=12 May 2022}}</ref><ref name="motorwebmuseum">{{cite web|url=https://www.motorwebmuseum.it/en/places/varese/the-milano-laghi-by-piero-puricelli-the-first-motorway-in-the-world/|title=The "Milano-Laghi" by Piero Puricelli, the first motorway in the world|access-date=10 May 2022}}</ref> The ''[[Autostrada dei Laghi]]'' ("Lakes Motorway"), the first built in the world, connecting [[Milan]] to [[Lake Como]] and [[Lake Maggiore]], and now parts of the [[Autostrada A8 (Italy)|A8]] and [[Autostrada A9 (Italy)|A9]] motorways, was devised by [[Piero Puricelli]] and was inaugurated in 1924.<ref name="motorwebmuseum"/> This motorway, called ''[[autostrada]]'', contained only one lane in each direction and no interchanges. The Bronx River Parkway was the first road in North America to utilize a median strip to separate the opposing lanes, to be constructed through a park and where intersecting streets crossed over bridges.<ref>{{cite news |title = Built to Meander, Parkway Fights to Keep Measured Pace |work = [[The New York Times]] |date = 6 June 1995 |url = https://www.nytimes.com/1995/06/06/nyregion/built-to-meander-parkway-fights-to-keep-measured-pace.html |access-date = 13 April 2010 |url-status = live |archive-url = https://web.archive.org/web/20130514214222/http://www.nytimes.com/1995/06/06/nyregion/built-to-meander-parkway-fights-to-keep-measured-pace.html |archive-date = 14 May 2013 |df = dmy-all }}</ref><ref>{{cite news |title = Bronx River Parkway on an Endangered List |first = Roberta |last = Hershenson |work = The New York Times |date = 18 June 1995 |url = https://www.nytimes.com/1995/06/18/nyregion/bronx-river-parkway-on-an-endangered-list.html |access-date = 13 April 2010 |url-status = live |archive-url = https://web.archive.org/web/20130514195215/http://www.nytimes.com/1995/06/18/nyregion/bronx-river-parkway-on-an-endangered-list.html |archive-date = 14 May 2013 |df = dmy-all }}</ref> The [[Southern State Parkway]] opened in 1927, while the [[Long Island Motor Parkway]] was closed in 1937 and replaced by the [[Northern State Parkway]] (opened 1931) and the contiguous [[Grand Central Parkway]] (opened 1936). In Germany, construction of the [[Bundesautobahn 555|Bonn-Cologne Autobahn]] began in 1929 and was opened in 1932 by [[Konrad Adenauer]], then the mayor of [[Cologne]]. In Canada, the first precursor with semi-controlled access was [[The Middle Road]] between [[Hamilton, Ontario|Hamilton]] and [[Toronto]], which featured a median divider between opposing traffic flow, as well as the nation's first [[cloverleaf interchange]]. This highway developed into the [[Queen Elizabeth Way]], which featured a cloverleaf and trumpet interchange when it opened in 1937 and until the [[World War II|Second World War]] boasted the longest illuminated stretch of roadway built.<ref>{{cite book |title = From Footpaths to Freeways |last1 = Shragge |first1 = John |last2 = Bagnato |first2 = Sharon |name-list-style = amp |publisher = Ontario Ministry of Transportation and Communications, Historical Committee |year = 1984 |page = 55 |isbn = 978-0-7743-9388-1 }}</ref> A decade later, the first section of [[Ontario Highway 401|Highway 401]] was opened, based on earlier designs. It has since become North America's busiest highway. The word ''freeway'' was first used in February 1930 by [[Edward Bassett|Edward M. Bassett]].<ref>{{cite book |first = Thomas L. |last = Karnes |title = Asphalt and Politics: A History of the American Highway System |url = https://archive.org/details/asphaltpoliticsh00karn |url-access = limited |location = Jefferson, NC |publisher = McFarland & Co |year = 2009 |page = [https://archive.org/details/asphaltpoliticsh00karn/page/n139 131] |isbn = 9780786442829 }}</ref><ref>{{cite book |first = Jeremy |last = Korr |chapter = Physical and Social Constructions of the Capital Beltway |title = The World Beyond the Windshield: Roads and Landscapes in the United States and Europe |editor1-first = Christof |editor1-last = Mauch |editor2-first = Thomas |editor2-last = Zeller |name-list-style = amp |location = Athens |publisher = Ohio University Press |year = 2008 |page = 195 |isbn = 9780821417676 |chapter-url=https://books.google.com/books?id=P2gtN_4_3HIC&pg=PA53}}</ref><ref name="bassett">{{cite journal |first = Edward M. |last = Bassett |title = The Freeway: A New Kind of Thoroughfare |journal = American City |volume = 42 |date = February 1930 |page = 95 }}</ref> Bassett argued that roads should be classified into three basic types: highways, [[parkway]]s, and freeways.<ref name="bassett" /> In Bassett's [[Zoning in the United States|zoning]] and [[property law]]-based system, [[abutter|abutting property owners]] have the rights of [[right to light|light]], [[air rights|air]] and access to highways but to not parkways and freeways; the latter two are distinguished in that the purpose of a parkway is recreation, while the purpose of a freeway is movement.<ref name="bassett" /> Thus as originally conceived, a freeway is a strip of public land devoted to movement to which abutting property owners do not have rights of light, air or access.<ref name="bassett" /> ==Trucking and haulage== [[Image:Intermodal Transport by Truck.JPG|thumb|right|A truck transporting a container on [[Interstate 95]] in [[South Florida]].]] {{multiple image |direction = vertical |width = 200 |footer = and safety sign on rear |image1 = B double yass truck stop.JPG |caption1 = [[B-Train|B double]] parked near the [[Hume Highway]] |image2 = Long vehicle warning sign on b double.JPG }} [[File:Transport - Ystad-2023.jpg|thumb|200px|The Polish transport company Bedmet uses a special vehicle to transport two large [[silo]]s.]] {{redirect|Trucking|the 1970 Grateful Dead song|Truckin'}} {{see also|Intermodal freight transport}} Trucking companies (in [[American English]] terminology) or haulage companies / hauliers (in British English) accept [[cargo]] for road transport. [[Truck driver]]s operate either independently – working directly for the client – or through freight carriers or shipping agents. Some big companies (e.g. grocery store chains) operate their own internal trucking operations. The market size for general freight trucking was nearly $125 billion in 2010. In the U.S. many truckers own their [[truck]] (rig), and are known as [[owner-operator]]s. Some road transportation is done on regular routes or for only one [[consignee]] per run ([[truckload shipping|full truckload]]), while others transport goods from many different loading stations/shippers to various consignees per run ([[less-than-truckload shipping|less-than-truckload]]). On some long runs only cargo for one leg of the route (to) is known when the cargo is loaded. Truckers may have to wait at the destination for a [[Backhaul (trucking)|backhaul]].<ref>{{cite web|url=http://www.transport-bbhandel.de/en/road-freight/blog/truck-freight-nothing-easier-than|title=What is a backhaul?|last=Brown|first=Dennis|publisher=Freight Broker Bootcamp|access-date=20 September 2018|archive-date=22 December 2019|archive-url=https://web.archive.org/web/20191222095059/http://www.transport-bbhandel.de/en/road-freight/blog/truck-freight-nothing-easier-than|url-status=live}}</ref> A [[bill of lading]] issued by the shipper provides the basic document for road freight. On cross-[[border]] transportation the trucker will present the cargo and documentation provided by the shipper to [[customs]] for inspection (for EC see also [[Schengen Agreement]]). This also applies to shipments that are transported out of a [[List of free ports|free port]].<ref>{{cite web|url=http://www.freightbrokerbootcamp.com/blog/what-is-a-backhaul/|title=Truck freight - nothing easier than|last=Bartsch|first=Frank|date=4 June 2013|publisher=BB Handel|access-date=8 June 2013|archive-date=12 May 2013|archive-url=https://web.archive.org/web/20130512000630/http://www.freightbrokerbootcamp.com/blog/what-is-a-backhaul/|url-status=live}}</ref> ===Hours of service=== To avoid accidents caused by fatigue, truckers have to adhere to strict rules for drive time and required rest periods. In the United States and Canada, these regulations are known as [[hours of service]], and in the European Union as [[drivers working hours]]. One such regulation is the [[Hours of Work and Rest Periods (Road Transport) Convention, 1979]].<ref>{{cite web|url=http://ec.europa.eu/transport/road/index_en.htm|title=What do we want to achieve ?|date=19 June 2012|publisher=European Commission|access-date=11 September 2012|url-status=dead|archive-url=https://web.archive.org/web/20070315230823/http://ec.europa.eu/transport/road/index_en.htm|archive-date=15 March 2007}}</ref> [[Tachograph]]s or [[Electronic on-board recorder]]s record the times the vehicle is in motion and stopped. Some companies use two drivers per truck to ensure uninterrupted transportation; with one driver resting or sleeping in a bunk in the back of the cab while the other is driving. ===Licenses=== Truck drivers often need special licenses to drive, known in the U.S. as a [[commercial driver's license]]. In the U.K. a [[large goods vehicle]] licence is required. For transport of hazardous materials (see [[dangerous goods]]) truckers need a licence, which usually requires them to pass an exam (e.g. in the EU). They have to make sure they affix proper labels for the respective hazard(s) to their vehicle. Liquid goods are transported by road in [[tank truck]]s (in American English) or tanker lorries (in British English) (also road-tankers) or special tank containers for [[Intermodal freight transport|intermodal transport]]. For transportation of live animals special requirements have to be met in many countries to prevent cruelty to animals (see [[animal rights]]). For fresh and frozen goods [[refrigerator truck]]s or [[reefer (container)|reefers]] are used. ===Weights=== Some loads are weighed at the point of origin and the driver is responsible for ensuring [[Gross vehicle weight rating|weights]] conform to maximum allowed standards. This may involve using on-board weight gauges (load pressure gauges), knowing the empty weight of the transport vehicle and the weight of the load, or using a commercial weight scale.<ref>{{cite web|url=https://catscale.com/about/|title=About CAT Scale|date=4 December 2015|publisher=CAT Scale|access-date=20 September 2018|archive-date=20 September 2018|archive-url=https://web.archive.org/web/20180920195839/https://catscale.com/about/|url-status=live}}</ref> In route [[weigh station]]s check that gross vehicle weights do not exceed the maximum weight for that particular jurisdiction and will include individual axle weights. This varies by country, states within a country, and may include federal standards. The [[United States]] uses [[Federal Motor Carrier Safety Administration|FMCSA federal standards]] that include [[bridge law]] [[Federal Bridge Gross Weight Formula|formulas]]. Many states, not on the national road system, use their own road and bridge standards.<ref>{{cite web|url=https://ops.fhwa.dot.gov/freight/policy/rpt_congress/truck_sw_laws/index.htm|title=Freight Management and Operations|last=Foxx|first=Anthony R.|date=2012-10-01|publisher=US Department of Transportation Federal Highway Administration|access-date=20 September 2018|archive-date=2018-06-30|archive-url=https://web.archive.org/web/20180630105718/https://ops.fhwa.dot.gov/FREIGHT/policy/rpt_congress/truck_sw_laws/index.htm|url-status=live}}</ref> Enforcement scales may include portable scales, scale houses with low speed scales or [[Weigh in motion|weigh-in-motion]] (WIM) scales. The [[European Union]] uses the ''International Recommendation'', OIML R 134-2 (2009). The process may involve a scale house and low-speed scales or higher-speed WIM road or bridge scales with the goal of public safety, as well as road and bridge safety, according to the [[Bridges Act]].<ref>{{cite web|url= https://www.oiml.org/en/files/pdf_r/r134-2-e09.pdf |archive-url=https://web.archive.org/web/20140106072945/http://www.oiml.org/en/files/pdf_r/r134-2-e09.pdf |archive-date=2014-01-06 |url-status=live|title=International Recommendation (OIML R 134-2|date= 2009 |publisher=International Organization of Legal Metrology|access-date=20 September 2018}}</ref> ==Modern roads== {{see also|Road|Highway|Controlled-access highway}} [[File:HighwayD1Spiš15Slovakia25.JPG|right|thumb|Highway [[Motorway D1 (Slovakia)|D1]] in [[Slovakia]].]] Today, roadways are primarily [[Asphalt concrete|asphalt]] or [[concrete]]. Both are based on McAdam's concept of stone aggregate in a binder, asphalt cement or [[Portland cement]] respectively. Asphalt is known as a flexible [[Pavement (material)|pavement]], one which slowly will "flow" under the pounding of traffic. Concrete is a rigid pavement, which can take heavier loads but is more expensive and requires more carefully prepared subbase. So, generally, major roads are concrete and local roads are asphalt. Concrete roads are often covered with a thin layer of asphalt to create a wearing surface. Modern pavements are designed for heavier vehicle loads and faster speeds, requiring thicker slabs and deeper subbase. Subbase is the layer or successive layers of stone, gravel and sand supporting the pavement. It is needed to spread out the slab load bearing on the underlying soil and to conduct away any water getting under the slabs. Water will undermine a pavement over time, so much of pavement and pavement joint design are meant to minimize the amount of water getting and staying under the slabs. Shoulders are also an integral part of highway design. They are multipurpose; they can provide a margin of side clearance, a refuge for incapacitated vehicles, an emergency lane, and parking space. They also serve a design purpose, and that is to prevent water from percolating into the soil near the main pavement's edge. Shoulder pavement is designed to a lower standard than the pavement in the traveled way and won't hold up as well to traffic, so driving on the shoulder is generally prohibited. Pavement technology is still evolving, albeit in not easily noticed increments. For instance, chemical additives in the pavement mix make the pavement more weather resistant, grooving and other surface treatments improve resistance to skidding and [[hydroplaning (tires)|hydroplaning]], and joint seals which were once tar are now made of low maintenance neoprene. ===Traffic control=== {{see also|Road traffic safety|Road traffic control|Traffic lights}} [[Image:Trafficjam.jpg|thumb|Disruptions in organized [[traffic]] flow can create delays lasting hours.]] Nearly all roadways are built with devices meant to control [[traffic]]. Most notable to the motorist are those meant to communicate directly with the driver. Broadly, these fall into three categories: signs, signals or pavement markings. They help the driver navigate; they assign the right-of-way at intersections; they indicate laws such as [[speed limit]]s and parking regulations; they advise of potential hazards; they indicate passing and no passing zones; and otherwise deliver information and to assure traffic is orderly and safe. Two hundred years ago these devices were signs, nearly all informal. In the late 19th century signals began to appear in the biggest cities at a few highly congested intersections. They were manually operated, and consisted of semaphores, flags or [[Traffic paddle|paddle]]s, or in some cases colored electric lights, all modeled on railroad signals. In the 20th century signals were automated, at first with electromechanical devices and later with computers. Signals can be quite sophisticated: with vehicle sensors embedded in the pavement, the signal can control and choreograph the turning movements of heavy traffic in the most complex of intersections. In the 1920s [[Traffic engineering (transportation)|traffic engineers]] learned how to coordinate signals along a thoroughfare to increase its speeds and volumes. In the 1980s, with computers, similar coordination of whole networks became possible. In the 1920s pavement markings were introduced. Initially they were used to indicate the road's centerline. Soon after they were coded with information to aid motorists in passing safely. Later, with multi-lane roads they were used to define [[lanes]]. Other uses, such as indicating permitted turning movements and pedestrian crossings soon followed. In the 20th century traffic control devices were standardized. Before then every locality decided on what its devices would look like and where they would be applied. This could be confusing, especially to traffic from outside the locality. In the United States standardization was first taken at the state level, and late in the century at the federal level. Each country has a Manual of Uniform Traffic Control Devices (MUTCD) and there are efforts to blend them into a worldwide standard. Besides signals, signs, and markings, other forms of traffic control are designed and built into the roadway. For instance, curbs and rumble strips can be used to keep traffic in a given lane and median barriers can prevent left turns and even U-turns. ===Toll roads=== {{globalize section|the United States|date=November 2021}} {{main|Toll road}} [[File:Eastlink - Wellington Rd Nortbound Toll Gantry.JPG|thumb|Eastlink - Wellington Rd Northbound Toll Gantry]] Early [[toll road]]s were usually built by private companies under a government franchise. They typically paralleled or replaced routes already with some volume of commerce, hoping the improved road would divert enough traffic to make the enterprise profitable. Plank roads were particularly attractive as they greatly reduced rolling resistance and mitigated the problem of getting mired in mud. Another improvement, better grading to lessen the steepness of the worst stretches, allowed draft animals to haul heavier loads. A ''toll road'' in the United States is often called a ''turnpike''. The term ''turnpike'' probably originated from the gate, often a simple pike, which blocked passage until the fare was paid at a ''toll house'' (or ''toll booth'' in current terminology). When the toll was paid the pike, which was mounted on a swivel, was turned to allow the vehicle to pass. Tolls were usually based on the type of cargo being transported, not the type of vehicle. The practice of selecting routes so as to avoid tolls is called [[shunpiking]]. This may be simply to avoid the expense, as a form of economic protest (or [[boycott]]), or simply to seek a road less traveled as a bucolic interlude. Companies were formed to build, improve, and maintain a particular section of roadway, and tolls were collected from users to finance the enterprise. The enterprise was usually named to indicate the locale of its roadway, often including the name of one of both of the termini. The word ''turnpike'' came into common use in the names of these roadways and companies, and is essentially used interchangeably with ''toll road'' in current terminology. In the [[United States]], toll roads began with the [[Lancaster Turnpike]] in the 1790s, within [[Pennsylvania]], connecting [[Philadelphia, Pennsylvania|Philadelphia]] and [[Lancaster, Pennsylvania|Lancaster]]. In the state of [[New York (state)|New York]], the [[Great Western Turnpike]] was started in [[Albany, New York|Albany]] in 1799 and eventually extended, by several alternate routes, to near what is now [[Syracuse, New York]]. Toll roads peaked in the mid 19th century, and by the turn of the twentieth century most toll roads were taken over by state highway departments. The demise of this early toll road era was due to the rise of canals and railroads, which were more efficient (and thus cheaper) in moving freight over long distances. Roads wouldn't again be competitive with rails and barges until the first half of the 20th century when the internal combustion engine replaces draft animals as the source of motive power. With the development, mass production, and popular embrace of the automobile, faster and higher capacity roads were needed. In the 1920s limited access highways appeared. Their main characteristics were dual roadways with access points limited to (but not always) grade-separated interchanges. Their dual roadways allowed high volumes of [[traffic]], the need for no or few [[traffic light]]s along with relatively gentle grades and curves allowed higher speeds. The first limited access highways were ''Parkways'', so called because of their often park-like [[landscaping]] and, in the metropolitan [[New York City]] area, they connected the region's system of parks. When the [[German autobahns]] built in the 1930s introduced higher design standards and speeds, road planners and road-builders in the United States started developing and building toll roads to similar high standards. The [[Pennsylvania Turnpike]], which largely followed the path of a partially built railroad, was the first, opening in 1940. After 1940 with the [[Pennsylvania Turnpike]], toll roads saw a resurgence, this time to fund limited access highways. In the late 1940s and early 1950s, after [[World War II]] interrupted the evolution of the highway, the US resumed building toll roads. They were to still higher standards and one road, the [[New York State Thruway]], had standards that became the prototype for the [[Interstate highway|U.S. Interstate Highway System]]. Several other major toll-roads which connected with the Pennsylvania Turnpike were established before the creation of the Interstate Highway System. These were the [[Indiana Toll Road]], [[Ohio Turnpike]], and [[New Jersey Turnpike]]. ====Interstate Highway System==== {{main|Interstate Highway System}} [[File:Arizona - North America - Southwest - Interstate Highway System (4893585908).jpg|thumb|Arizona - North America - Southwest - Interstate Highway System (4893585908)]] [[File:San Diego Trolley over Interstate 8.jpg|thumb|San Diego Trolley over Interstate 8]] In the United States, beginning in 1956, Dwight D. Eisenhower National System of Interstate and Defense Highways, commonly called the [[Interstate Highway System]] was built. It uses 12 foot (3.65m) lanes, wide [[Central reservation|medians]], a maximum of 4% [[Grade (slope)|grade]], and full access control, though many sections don't meet these standards due to older construction or constraints. This system created a continental-sized network meant to connect every population center of 50,000 people or more. By 1956, most limited access highways in the eastern United States were toll roads. In that year, the [[Federal Aid Highway Act of 1956]] was passed, funding non-toll roads with 90% federal dollars and 10% state match, giving little incentive for states to expand their turnpike system. Funding rules initially restricted collections of tolls on newly funded roadways, bridges, and tunnels. In some situations, expansion or rebuilding of a toll facility using Interstate Highway Program funding resulted in the removal of existing tolls. This occurred in [[Virginia]] on [[Interstate 64]] at the [[Hampton Roads Bridge-Tunnel]] when a second parallel roadway to the regional 1958 [[bridge-tunnel]] was completed in 1976. Since the completion of the initial portion of the Interstate Highway System, regulations were changed, and portions of toll facilities have been added to the system. Some states are again looking at toll financing for new roads and maintenance, to supplement limited federal funding. In some areas, new road projects have been completed with [[public-private partnerships]] funded by tolls, such as the [[Pocahontas Parkway]] (I-895) near [[Richmond, Virginia]]. The newest policy passed by Congress and the Obama administration regarding highways is the [[Surface and Air Transportation Programs Extension Act of 2011]]. ===Pneumatic tyres=== {{main|Tire}} [[File:Tire components -- NHTSA The Pneumatic Tire.png|thumb|Tire components -- NHTSA The Pneumatic Tire]] As the horse-drawn [[carriage]] was replaced by the [[automobile|car]], [[bus]] and lorry or [[truck]], and speeds increased, the need for smoother roads and less vertical displacement became more apparent, and pneumatic [[Tire|tyre]]s were developed to decrease the apparent roughness. [[Wagon]] and carriage [[wheel]]s, made of [[wood]], had a tyre in the form of an [[iron]] strip that kept the wheel from wearing out quickly. Pneumatic tyres, which had a larger footprint than iron tyres, also were less likely to get bogged down in the [[mud]] on unpaved roads. ==See also== {{div col|colwidth=18em}} * [[National Highway System (United States)|National Highway System (USA)]] * [[Passenger vehicles in the United States|Passenger vehicles in the USA]] * [[Transportation in the United States]] * [[National Transportation Safety Board]] * [[German autobahns]] * [[Glossary of road transport terms]] * [[Neo-bulk cargo]] * [[Public transport]] * [[Traffic congestion]] * [[Transportation forecasting]] * [[Transport engineering]] * [[List of roads and highways]] * {{portal-inline|Transport}} * [[Portal:Transport/Trucking media]] * [[Portal:Transport/Highway media]] {{div col end}} == Bibliography == * {{cite book |last1=Lay |first1=M. G. |title=Ways of the World: A History of the World's Roads and of the Vehicles That Used Them |date=1992 |publisher=Primavera Press |location=Sydney |isbn=1-875368-05-1}} ==References== {{reflist|30em}} == External links == {{Commons|Road transport}} {{Public transport}} {{Authority control}} {{DEFAULTSORT:Road Transport}} [[Category:Road transport| ]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite news
(
edit
)
Template:Cite web
(
edit
)
Template:Commons
(
edit
)
Template:Convert
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:Globalize section
(
edit
)
Template:Main
(
edit
)
Template:Multiple image
(
edit
)
Template:Portal-inline
(
edit
)
Template:Public transport
(
edit
)
Template:Redirect
(
edit
)
Template:Refimprove
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Transport
(
edit
)
Template:US patent
(
edit
)
Template:Webarchive
(
edit
)
Template:Which
(
edit
)
Search
Search
Editing
Road transport
Add topic