Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ogallala Aquifer
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Water table aquifer beneath the Great Plains in the United States of America}} {{Use American English|date = April 2019}} {{Use mdy dates|date = April 2019}} {{stack begin}} [[File:Ogallala saturated thickness 1997-sattk97-v2.svg|thumb|right|300px|Saturated thickness of the Ogallala Aquifer in 1997 after several decades of intensive withdrawals. The breadth and depth of the aquifer generally decrease from north to south.]] [[File:USGS-SIR-20175040-1 Ogallala aquifer 1950 - 2015.png|thumb|right|300px|Regions where the water level has declined in the period 1950–2015 are shown in yellow and red; regions where it has increased are shown in shades of blue. Data from the [[United States Geological Survey|USGS]]]] [[File:High plains fresh groundwater usage 2000.svg|thumb|right|300px|Groundwater withdrawal rates (fresh water, all sources) by [[County (United States)|county]] in 2000. Source: National Atlas]] {{stack end}} The '''Ogallala Aquifer''' ({{respell|oh|gə|LAH|lə}}) is a shallow [[water table]] [[aquifer]] surrounded by sand, silt, clay, and gravel located beneath the [[Great Plains]] in the United States. As one of the world's largest aquifers, it underlies an area of approximately {{convert|174000|sqmi|abbr=on}} in portions of eight [[U.S. state|states]] ([[South Dakota]], [[Nebraska]], [[Wyoming]], [[Colorado]], [[Kansas]], [[Oklahoma]], [[New Mexico]], and [[Texas]]).<ref name="mcguire07">{{Cite web |last= Mcguire, V.L. |title= Changes in Water Levels and Storage in the High Plains Aquifer, Predevelopment to 2005 |work= USGS Fact Sheet 2007-3029 |publisher = [[United States Geological Survey|USGS]] |access-date= 2009-08-12 |date= May 2007 |url= http://pubs.usgs.gov/fs/2007/3029/}}</ref> It was named in 1898 by geologist [[Nelson Horatio Darton|N. H. Darton]] from its [[type locality (geology)|type locality]] near the town of [[Ogallala, Nebraska]]. The aquifer is part of the High Plains Aquifer System, and resides in the [[Ogallala Formation]], which is the principal geologic unit underlying 80% of the [[High Plains (United States)|High Plains]].<ref>{{cite book |last1=Darton |first1=N. H. |title=USGS Professional Paper 17|chapter=Preliminary report on the geology and water resources of Nebraska west of the one hundred and third meridian |date=1903 |doi=10.3133/pp17 |chapter-url=https://doi.org/10.3133/pp17 |access-date=14 August 2022 |publisher=Government Printing Office|hdl=2346/61709 }}</ref><ref name="BuchananEtAl">{{cite journal|author1=Rex C. Buchanan |author2=B. Brownie Wilson |author3=Robert R. Buddemeier |author4=James J. Butler Jr |title=The High Plains Aquifer |journal= Kansas Geological Survey, Public Information Circular (PIC) 18 |url=http://www.kgs.ku.edu/Publications/pic18/pic18_1.html }}</ref> Large-scale extraction for agricultural purposes started after [[World War II]] due partially to [[center pivot irrigation]] and to the adaptation of automotive engines to power groundwater wells.<ref>{{Cite web |url= https://www.hks.harvard.edu/m-rcbg/heep/papers/hornbeck_dp39.pdf |title= The Historically Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Drought |author1= Hornbeck, Richard |author2= Pinar Keskin |date= September 2012 |website= Harvard Environmental Economics Program |publisher= Cambridge |access-date= 2016-10-02}}</ref> Today about 27% of the irrigated land in the entire United States lies over the aquifer, which yields about 30% of the ground water used for irrigation in the United States.<ref>{{Cite web |url= https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1048827.pdf |title= Ogallala Aquifer Initiative 2011 Report |date= 2011 |website= Natural Resources Conservation Service |publisher= United States Department of Agriculture |access-date= 2016-10-02 |archive-date= May 2, 2022 |archive-url= https://web.archive.org/web/20220502213245/https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1048827.pdf |url-status= dead }}</ref> The aquifer is at risk of over-extraction and pollution. Since 1950, agricultural irrigation has reduced the saturated volume of the aquifer by an estimated 9%. Once depleted, the aquifer will take over 6,000 years to replenish naturally through rainfall.<ref name="plumer">{{cite news |url= https://www.washingtonpost.com/blogs/wonkblog/wp/2012/08/10/where-the-worlds-running-out-of-water-in-one-map/ |author= Plumer, B. |year=2012 |title= Where the world's running out of water, in one map |newspaper=[[Washington Post]] |access-date= 2014-08-18 }}</ref> The aquifer system supplies drinking water to 82% of the 2.3 million people (1990 census) who live within the boundaries of the High Plains study area.<ref name="dennehy">{{Cite web |url= http://pubs.usgs.gov/fs/2000/0091/report.pdf|author= Dennehy, K.F. |year=2000 |title= High Plains regional ground-water study: U.S. Geological Survey Fact Sheet FS-091-00 |publisher= [[United States Geological Survey|USGS]] |access-date= 2008-05-07 }}</ref> ==General characteristics== The deposition of aquifer material dates back two to six million years, from the late [[Miocene]] to early [[Pliocene]] ages when the southern [[Rocky Mountains]] were still tectonically active. From the uplands to the west, rivers and streams cut channels in a generally west to east or southeast direction. [[Erosion]] of the Rockies provided [[alluvial]] and [[aeolian processes|aeolian]] sediment that filled the ancient channels and eventually covered the entire area of the present-day aquifer, forming the water-bearing Ogallala Formation.<ref>Gustavson, T. C, Winkler, D. A. (1988). Depositional facies of the Miocene-Pliocene Ogallala Formation, northwestern Texas and eastern New Mexico. Geology, 16(3), 203–206. Retrieved from: http://geology.gsapubs.org/content/16/3/203.short</ref><ref>Diffendal, R. F. (1984). Comments on the geologic history of the Ogallala Formation in the southern panhandle of Nebraska. Papers in Natural Resources. Paper 116. Retrieved from http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1117&context=natrespapers</ref> In that respect, the process is similar to those currently prevailing in other modern rivers of the area, such as the [[Kansas River]] and its tributaries. The major differences are time and depth. The depth of the Ogallala varies with the shape of then-prevailing surface, being deepest where it fills ancient valleys and channels. The Ogallala Formation consists mostly of coarse sedimentary rocks in its deeper sections, which transition upward into finer-grained material. The water-saturated thickness of the Ogallala Formation ranges from a few feet to more than 1,000 feet. Its deepest part is 1200 ft. (300 m) and is generally greater in the Northern Plains.<ref>[http://www.hpwd.com/the_ogallala.asp High Plains Underground Water Conservation District #1 (Texas)] {{webarchive|url=https://web.archive.org/web/20070514235824/http://www.hpwd.com/the_ogallala.asp |date=2007-05-14 }} retrieved April 9, 2007.</ref> The depth of the water below the surface of the land ranges from almost {{convert|400|ft}} in parts of the north to between {{convert|100|and|200|ft|m|0}} throughout much of the south. Present-day recharge of the aquifer with fresh water occurs at an exceedingly slow rate, suggesting that much of the water in its [[porosity|pore]] spaces is [[paleowater]], dating back to the [[last glacial period|most recent ice age]] and probably earlier. An impervious geological layer between the aquifer and surface of the land, combined with an arid climate, prevents much recharge from occurring.<ref>Thompson, J., et al. (2018). ''Legal Control of Water Resources: Cases and Materials'', 6th ed. West Academic Publishing. p. 13. ISBN 978-1-68328-983-8.</ref> Groundwater within the Ogallala generally flows from west to east at an average rate of a foot per day. [[Hydraulic conductivity]], or the ability for a fluid (water) to move through porous material, ranges from {{convert|25|to|300|ft|m}} per day.<ref>Gutentag, E. D, Heimes, F. J, Krothe, N. C, Luckey, R. R, Weeks, J. B. (1984). "Geohydrology of the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming". U.S. Geological Survey Professional Paper 1400-B. Retrieved from http://pubs.usgs.gov/pp/1400b/report.pdf</ref> Water quality within the Ogallala varies with the highest quality for drinking and irrigation in the northern region while the southern region had the poorest.<ref name="Gurdak">Gurdak, J. J, McMahon, P. B, Dennehy, K, Qi, S. L. (2009). "Water quality in the High Plains Aquifer, Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming". ''National Water-Quality Assessment Program, USGS Circular 1337''. Retrieved from http://pubs.usgs.gov/circ/1337/pdf/C1337.pdf</ref> Human and natural processes over the past 60 to 70 years, including irrigation density, climate, and nitrogen applications, have caused higher concentrations of contaminants including nitrates. Nitrate levels generally meet USGS water quality standards, but continue to gradually increase over time.<ref name="Gurdak" /> This trend can impact the future groundwater sustainability for portions of the aquifer. ==Aquifer water balance== An aquifer is a groundwater storage reservoir in the [[water cycle]]. While groundwater is a renewable source, reserves replenish relatively slowly. The [[US Geological Survey|USGS]] has performed several studies of the aquifer, to determine what is coming in ([[groundwater recharge]] from the surface), what is leaving (water pumped out and [[baseflow]] to streams), and what the net changes in storage are (rise, fall or no change). The [[USGS]] estimated that total water storage was about {{convert|2925000000|acre.ft|km3}} in 2005. Withdrawals from the Ogallala Aquifer for irrigation amounted to {{convert|26|km3|acre.ft|abbr=on}} in 2000. Since major groundwater pumping began in the late 1940s, overdraft from the High Plains Aquifer has amounted to {{convert|332,000,000|acre.ft|km3}}, 85% of the volume of Lake Erie.<ref>{{cite journal |last1=Perkin |first1=Joshuah |last2=Gido |first2=Keith |last3=Falke |first3=Jeffrey |last4=Crockett |first4=Harry |last5=Johnson |first5=Eric |last6=Sanderson |first6=John |title=Groundwater declines are linked to changes in Great Plains stream fish assemblages |journal=Proceedings of the National Academy of Sciences |date=July 11, 2017 |volume=114 |issue=28 |pages=7373–7378 |doi=10.1073/pnas.1618936114 |pmid=28652354 |pmc=5514705 |bibcode=2017PNAS..114.7373P |doi-access=free }}</ref> Many farmers in the Texas [[High Plains (United States)|High Plains]], which rely particularly on groundwater, are now turning away from [[irrigated agriculture]] as pumping costs have risen and as they have become aware of the hazards of overpumping.<ref>{{cite news |title= Ogallala aquifer - Water hot spots | work=BBC News |year=2003 |url= http://news.bbc.co.uk/1/shared/spl/hi/world/03/world_forum/water/html/ogallala_aquifer.stm}}</ref> ===Groundwater recharge=== The rate at which groundwater is recharged is limited by several factors. Much of the plains region is [[steppe|semiarid]], with steady winds that hasten evaporation of surface water and precipitation. In many locations, the aquifer is overlain, in the [[vadose zone]], with a shallow layer of [[caliche]] that is practically [[hydraulic conductivity|impermeable]]; this limits the amount of water able to recharge the aquifer from the land surface. However, the soil of the [[playa lakes]] is different and not lined with caliche, making these some of the few areas where the aquifer can recharge. The destruction of playas by farmers and development decreases the available recharge area. The prevalence of the caliche is partly due to the ready evaporation of soil moisture and the semiarid climate; the aridity increases the amount of evaporation, which in turn increases the amount of caliche in the soil. Both mechanisms reduce the amount of recharge water that reaches the water table. Recharge in the aquifer ranges from {{convert|0.024|in|mm}} per year in parts of Texas and New Mexico to {{convert|6|in|mm}} per year in south-central Kansas.<ref>[https://pubs.er.usgs.gov/usgspubs/pp/pp1400B ''Geohydrology of the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming'']. Gutentag, E. D.; Heimes, F. J.; Krothe, N. C.; Luckey, R. R.; Weeks, J. B. 1984.</ref> ===Groundwater discharge=== [[File:Crops Kansas AST 20010624.jpg|thumb|NASA [[Advanced Spaceborne Thermal Emission and Reflection Radiometer|ASTER]] image of a roughly 557 mi<sup>2</sup> area of fields (1443 km<sup>2</sup>) in [[Kansas]] watered from the Ogallala Aquifer with center pivot irrigation systems]] The regions overlying the Ogallala Aquifer are some of the most productive regions in the United States for ranching [[livestock]], and growing [[maize|corn]], [[wheat]], and [[soybeans]]. The success of large-scale farming in areas that do not have adequate [[precipitation (meteorology)|precipitation]] and do not always have perennial [[surface water]] for diversion has depended heavily on pumping groundwater for irrigation. Early settlers of the semiarid High Plains were plagued by crop failures due to cycles of [[drought]], culminating in the disastrous [[Dust Bowl]] of the 1930s. Only after [[World War II]], when [[center-pivot irrigation]] became available, was the land mass of the High Plains aquifer system transformed into one of the most agriculturally productive regions in the world. ===Change in groundwater storage=== Ground water levels decline when the rate of extraction by irrigation exceeds the rate of recharge. At places, the water table was measured to drop more than 5 ft (1.5 m) per year at the time of maximum extraction. In extreme cases, the deepening of [[water well|wells]] was required to reach the steadily falling water table. In the 21st century, recognition of the significance of the aquifer has led to increased coverage from regional and international journalists.<ref>[http://www.nwanews.com/adg/Business/167660/ "Shrinking aquifer looms as big problem for farms"] {{webarchive|url=https://web.archive.org/web/20090204014036/http://www.nwanews.com/adg/Business/167660/ |date=2009-02-04 }}. Nancy Cole, ''Arkansas Democrat-Gazette''. September 24, 2006. Last accessed October 24, 2006.</ref><ref>[http://www.amarillo.com/stories/100406/opi_5471882.shtml Column - Mansel Phillips: "Too many thirsty industries, not nearly enough water"] {{Webarchive|url=https://web.archive.org/web/20130615174945/http://amarillo.com/stories/100406/opi_5471882.shtml |date=June 15, 2013 }}. Mansel Phillips, ''Amarillo Globe News''. October 4, 2006. Last accessed October 24, 2006.</ref><ref>[http://journalstar.com/news/opinion/another-sign-of-long-term-water-worries/article_56f379fb-2e2c-56e2-ad47-79b026e877ac.html "Another sign of long-term water worries"], ''Lincoln Star Journal'', October 8, 2006. Last accessed November 20, 2012</ref><ref>[[Daily Telegraph|Daily Telegraph (UK)]] Saturday Magazine Issue no 48,446 (dated 5 March 2011) pp 26-32 "High and Dry" Report by ''Charles Lawrence''</ref> [[Water conservation]] practices ([[terrace (agriculture)|terracing]] and [[crop rotation]]), more efficient irrigation methods (center pivot and [[drip irrigation|drip]]), and reduced area under irrigation have helped to slow depletion of the aquifer, but levels are generally still dropping in areas including southwestern Kansas and the [[Texas Panhandle]]. In other areas, such as parts of eastern and central Nebraska and of the region south of [[Lubbock, Texas]], water levels have risen since 1980. The [[center-pivot irrigator]] was described as the "villain"<ref name=NYT20May2013>{{cite news|newspaper=New York Times|title=Wells Dry, Fertile Plains Turn to Dust|date=19 May 2013|first=Michael|last=Wines|url=https://www.nytimes.com/2013/05/20/us/high-plains-aquifer-dwindles-hurting-farmers.html?smid=pl-share}}</ref> in a 2013 ''[[New York Times]]'' article, "Wells Dry, Fertile Plains Turn to Dust" recounting the relentless decline of parts of the Ogallala Aquifer. Sixty years of [[intensive farming]] using huge center-pivot irrigators has emptied parts of the High Plains Aquifer.<ref name=NYT20May2013 /> Hundreds to thousands of years of rainfall would be needed to replace the groundwater in the depleted aquifer. In Kansas in 1950, irrigated cropland covered {{cvt|250,000|acre|ha}}; with the use of center-pivot irrigation, nearly three million acres of land were irrigated.<ref name=NYT20May2013 /> In some places in the Texas Panhandle, the water table has been drained (dewatered). "Vast stretches of Texas farmland lying over the aquifer no longer support irrigation. In west-central Kansas, up to a fifth of the irrigated farmland along a {{convert|100|mi |km|adj=mid | swath}} of the aquifer has already gone dry."<ref name=NYT20May2013 /> The center-pivot irrigation system is considered to be a highly efficient system which helps conserve water. However, by 2013, as the [[water consumption]] efficiency of the center-pivot irrigator improved over the years, farmers chose to plant more intensively, irrigate more land, and grow thirstier crops rather than reduce water consumption--an example of the [[Jevons Paradox]] in practice.<ref name=NYT20May2013 /> One approach to reducing the amount of groundwater used is to employ treated recycled water for irrigation; another approach is to change to crops that require less water, such as [[sunflower]]s.<ref>[http://www.denverpost.com/news/ci_4433612 Jeremy P. Meyer, "Farmers' tower of power"], ''Denver Post'', 2 October 2006. Last accessed October 24, 2006</ref> Several rivers, such as the [[Platte River|Platte]], run below the water level of the aquifer. Because of this, the rivers receive groundwater flow (baseflow), carrying it out of the region rather than recharging the aquifer. The $46.1-million [[Optima Lake]] dam in western [[Oklahoma]] was rendered useless when the dropping level of the aquifer drastically reduced flow of the [[Beaver River (Oklahoma)|Beaver River]], the lake's intended source of water.<ref>Logan Layden, "If you Want to Build a New Lake in Oklahoma, Forget History", March 28, 2013, StateImpact Oklahoma{{cite web |url= https://stateimpact.npr.org/oklahoma/2013/03/28/the-lessons-of-history-no-longer-apply-when-it-comes-to-building-lakes/ |title= The Lessons of History No Longer Apply when it comes to Building Lakes |work= StateImpact Oklahoma website |access-date= 2015-06-01}}</ref> ===Accelerated decline in aquifer storage=== The depletion between 2001 and 2008, inclusive, is about 32% of the cumulative depletion during the entire 20th century.<ref name=KonikowUSGCjan2013>{{cite report |url=http://pubs.usgs.gov/sir/2013/5079/SIR2013-5079.pdf |title= Groundwater Depletion in the United States (1900–2008)|series=Scientific Investigations Report |number=2013–5079 |pages=63 |publisher=U.S. Department of the Interior, U.S. Geological Survey|location=Reston, Virginia|first=Leonard F.|last=Konikow}}</ref> In the United States, the biggest users of water from aquifers include agricultural irrigation and oil and coal extraction.<ref name=depletion>{{cite news|title=Drop in U.S. underground water levels has accelerated: USGS|url=https://www.reuters.com/article/us-usa-water-idUSBRE94J0Y920130520 |location=Washington, DC|first=Deborah |last=Zabarenko|date=20 May 2013|work=Reuters}}</ref> "Cumulative total [[overdrafting|groundwater depletion]] in the United States accelerated in the late 1940s and continued at an almost steady linear rate through the end of the century. In addition to widely recognized environmental consequences, groundwater depletion also adversely impacts the long-term sustainability of groundwater supplies to help meet the nation’s water needs."<ref name=KonikowUSGCjan2013 /> According to Matthew Sanderson, a professor of sociology at [[Kansas State University]], these trends are exacerbated by an [[agricultural subsidy]] system and a [[United States tax code]] that encourage overinvestment in water-using technology due to a [[treadmill of production]].<ref>{{cite journal | last1 = Sanderson | first1 = Matthew R. | last2 = Hughes | first2 = Vivian | title = Race to the Bottom (of the Well): Groundwater in an Agricultural Production Treadmill | journal = Social Problems | volume = 66 | issue = 3 | pages = 392–410 | year = 2019 | publisher = Oxford University Press | doi = 10.1093/socpro/spy011 | url = https://academic.oup.com/socpro/article/66/3/392/5032915 | access-date = 2024-12-09 }} </ref> The treadmill of production is complemented by a treadmill of protection, a water conservation system whose policies delay effective long term water conservation measures to protect the water interests of its key industries in the short term.<ref>{{cite journal | last1 = Sanderson | first1 = M. R. | last2 = Griggs | first2 = B. W. | last3 = Schäfer | first3 = G. N. | title = Ad Astra per aquam (to the stars, through water): The Kansas Aqueduct Project as a sociotechnical imaginary in the Anthropocene | journal = The Anthropocene Review | year = 2024 | volume = | issue = | pages = | id = 20530196241300525 | doi = 10.1177/20530196241300525 | url = https://doi.org/10.1177/20530196241300525 | access-date = 2024-12-09 }} </ref> Robertson suggests federal policy reforms to increase incentives to conserve groundwater, such as amendments to the [[Conservation Reserve Program]], along with increased restrictions on water use at the state level.<ref>{{cite web |last1=Griggs |first1=Burke |last2=Miller-Klugesherz |first2=Jacob A. |last3=Sanderson |first3=Matthew R. |title=Farmers are depleting the Ogallala Aquifer because the government pays them to do it |url=https://theconversation.com/farmers-are-depleting-the-ogallala-aquifer-because-the-government-pays-them-to-do-it-145501 |website=The Conversation |language=en |date=9 November 2020}}</ref> Since the 1940s, pumping from the Ogallala has drawn the aquifer down by more than {{convert|300|ft|m|sigfig=1}} in some areas. Producers have taken steps to reduce their reliance on irrigated water. Streamlined operations allow them to produce significantly greater yield using roughly the same amount of water needed four decades ago. Still, losses to the aquifer between 2001 and 2011 equated to a third of its cumulative depletion during the entire 20th century. The Ogallala is recharged primarily by rainwater, but only about one inch of precipitation actually reaches the aquifer annually. Rainfall in most of the Texas High Plains is minimal, evaporation is high, and infiltration rates are slow.<ref name="window.state.tx.us">[http://www.window.state.tx.us/specialrpt/water/96-1746.pdf Texas Water Report: Going Deeper for the Solution] {{Webarchive|url=https://web.archive.org/web/20140222144253/http://www.window.state.tx.us/specialrpt/water/96-1746.pdf |date=February 22, 2014 }} Texas Comptroller of Public Accounts. Retrieved 2/10/14.</ref> During the 1990s, the aquifer held some three billion acre-feet of groundwater used for crop irrigation as well as drinking water in urban areas. The demand for the water outstrips its replenishment. The water level is particularly on the decline in Texas and New Mexico. Continued long-term use of the aquifer is "troublesome and in need of major reevaluation," according to the [[historian]] [[Paul H. Carlson]], [[Emeritus|professor-emeritus]] from [[Texas Tech University]] in [[Lubbock, Texas|Lubbock]].<ref>{{cite news|url=https://www.lubbockonline.com/news/20190622/caprock-chronicles-ogallala-aquifers-long-history-uncertain-future|title=Caprock Chronicles: The Ogallala Aquifer's long history, uncertain future|author=Paul H. Carlson|newspaper=[[Lubbock Avalanche-Journal]]|date=June 22, 2019|access-date=June 25, 2019|author-link=Paul H. Carlson}}</ref> ==Environmental controversies== {{More science citations needed|section|date=July 2019}} ===Keystone Pipeline=== {{See also|Environmental risks of the Keystone XL pipeline}} [[File:Keystone XL - Ogallala Aquifer.png|thumb|A map showing aquifer thickness of the Ogallala Aquifer with the proposed [[Keystone XL]] pipeline route laid over.]] In 2008, [[TransCanada Corporation]] proposed the construction of the {{convert|1661|mi|adj=on}} [[Keystone Pipeline|Keystone XL]] pipeline to carry oil from the [[Athabasca oil sands]] of [[Alberta]] to refineries near [[Houston, Texas]].<ref>Hovey, Art. [http://www.downstreamtoday.com/news/article.aspx?a_id=11336&AspxAutoDetectCookieSupport=1 "TransCanada Proposes Second Oil Pipeline".] ''[http://journalstar.com/ Lincoln Journal-Star.]'' 2008-06-12. Reproduced at [http://www.downstreamtoday.com/ Downstream Today website.] Retrieved 2011-08-27.</ref><ref>[http://www.transcanada.com/keystone.html "Keystone Pipeline Project".] {{webarchive|url=https://web.archive.org/web/20121109065813/http://www.transcanada.com/keystone.html |date=November 9, 2012 }} [http://www.transcanada.com/index.html TransCanada.] {{webarchive|url=https://web.archive.org/web/20110902014525/http://www.transcanada.com/index.html |date=2011-09-02 }} Retrieved 2011-08-27.</ref> The proposed route of the pipeline crosses the eastern part of the [[Sandhills (Nebraska)|Nebraska Sandhills]]; opponents of the route cite the risk to the Ogallala Aquifer posed by the possibility of contamination from spilled [[diluted bitumen|dilute bitumen]].<ref name=routebest>Morton, Joseph, and Paul Hammel. [http://www.omaha.com/article/20110827/NEWS01/708279874/1009 "Report: Sand Hills route best".] {{webarchive|url=https://archive.today/20130131205042/http://www.omaha.com/article/20110827/NEWS01/708279874/1009 |date=2013-01-31 }} ''[http://www.omaha.com/ Omaha World-Herald.]'' 2011-08-27. Retrieved 2011-08-27.</ref><ref>[http://www.foe.org/keystone-xl-pipeline "Keystone XL Pipeline".] [http://www.foe.org/ Friends of the Earth.] Retrieved 2011-08-27.</ref> Pipeline industry spokesmen have noted that thousands of miles of existing pipelines carrying crude oil and refined liquid hydrocarbons have crossed over the Ogallala Aquifer for years, in southeast Wyoming, eastern Colorado and New Mexico, western Nebraska, Kansas, Oklahoma, and Texas.<ref>Larry Lakely, [http://heartland.org/policy-documents/map-pipelines-and-ogallala-aquifer-2012 Map of Pipelines and the Ogallala Aquifer, 2012] {{Webarchive|url=https://web.archive.org/web/20141218034150/http://heartland.org/policy-documents/map-pipelines-and-ogallala-aquifer-2012 |date=December 18, 2014 }}, 20 January 2012.</ref><ref>Andrew Black and David Holt, [http://journalstar.com/news/opinion/editorial/columnists/guest-view-we-need-crude-oil-pipelines/article_767f684d-42ef-586e-97ec-557e6764e8a4.html Guest View: We need crude oil pipelines] Lincoln (NE) Journal Star, 12 July 2011.</ref><ref>Allegro Energy Group, [http://www.pipeline101.com/reports/Notes.pdf How Pipelines Make the Oil Market Work – Their Networks, Operation and Regulation] {{webarchive |url=https://web.archive.org/web/20131228073802/http://www.pipeline101.com/reports/Notes.pdf |date=December 28, 2013 }}, December 2001, Association of Oil Pipe Lines and American Petroleum Institute, p.8-9.</ref><ref>Pipeline 101, [http://www.pipeline101.com/Overview/products-pl.html Refined products pipelines] {{Webarchive|url=https://web.archive.org/web/20140414225855/http://www.pipeline101.com/overview/products-pl.html |date=April 14, 2014 }}, accessed 8 October 2013.</ref><ref>Oil Sands fact Check, [http://oilsandsfactcheck.org/2012/05/30/myth-vs-fact-kxl-will-threaten-the-ogallala-aquifer/ Myth vs. Fact: KXL will Threaten the Ogallala Aquifer] {{Webarchive|url=https://web.archive.org/web/20140225232135/http://oilsandsfactcheck.org/2012/05/30/myth-vs-fact-kxl-will-threaten-the-ogallala-aquifer/ |date=February 25, 2014 }} 20 May 2012.</ref> The Pioneer crude oil pipeline crosses east-west across Nebraska, and the [[Pony Express pipeline]], which crosses the Ogallala Aquifer in Colorado, Nebraska, and Kansas, was being converted as of 2013 from natural gas to crude oil, under a permit from the [[Federal Energy Regulatory Commission]].<ref>Paul Hammel, [https://archive.today/20131011165109/http://www.omaha.com/article/20120823/NEWS/708239899 Smaller oil pipeline to cross Ogallala Aquifer], Omaha.com, 23 August 2012.</ref> As the lead agency in the transboundary pipeline project, the [[United States Department of State|U.S. State Department]] commissioned an environmental-impact assessment as required by the [[National Environmental Policy Act of 1969]]. The ''Environmental Impact Statement'' concluded that the project posed little threat of "adverse environmental impacts",<ref name=routebest/><ref>O'Meara, Dina, and Sheldon Alberts. [https://calgaryherald.com/business/report+clears+TransCanada+Keystone+pipeline/5312553/story.html "U.S. report clears way for TransCanada's Keystone XL pipeline".] {{Webarchive|url=https://web.archive.org/web/20111126182348/http://www.calgaryherald.com/business/report+clears+TransCanada+Keystone+pipeline/5312553/story.html |date=2011-11-26 }} ''[https://calgaryherald.com/index.html Calgary Herald.] {{webarchive|url=https://web.archive.org/web/20110831213136/http://www.calgaryherald.com/index.html |date=2011-08-31 }}'' 2011-08-27. Retrieved 2011-08-27.</ref> the report was drafted by [[Cardno Entrix]], a company that assisted both the Department of State and the Federal Energy Regulatory Commission in preparing [[environmental impact statement]]s for other proposed TransCanada projects. Although it is "common for companies applying to build government projects to be involved in assigning and paying for the impact analysis",<ref>"[https://www.nytimes.com/2011/10/08/science/earth/08pipeline.html?_r=2 Pipeline Review Is Faced With Question of Conflict]", ''New York Times'', October 7, 2011.</ref> several opponents of the project suggested there could be a conflict of interest. In response to that concern, the Department of State's Office of the Inspector General conducted an investigation of the potential conflict of interest. The February 2012 report of that investigation states no conflict of interest existed either in the selection of the contractor or in the preparation of the environmental impact statement.<ref>United States Department of State and the Broadcasting Board of Governors Office of Inspector General Office of Audits. February 2012. Special Review of the Keystone XL Pipeline Permit Process. Report Number AUD/SI-12-28. </ref> U.S. President Barack Obama "initially rejected the Keystone XL pipeline in January 2012, saying he wanted more time for an environmental review."<ref name="NBC">{{cite web|last=Rafferty|first=Andrew|title=Thousands rally in D.C. against Keystone Pipeline|url=http://usnews.nbcnews.com/_news/2013/02/17/16996283-thousands-rally-in-dc-against-keystone-pipeline|work=NBC News|publisher=National Broadcast Company|access-date=21 February 2013}}</ref> On February 17, 2013, a rally at the National Mall drew an estimated 40,000 in protest of Keystone XL.<ref name="NBC" /> In January 2014, the [[U.S. State Department]] released its Keystone pipeline ''Final Supplemental Environmental Impact Statement for the Keystone XL Project Executive Summary'', which concluded that, according to models, a large crude oil spill from the pipeline that reached the Ogallala could spread as far as {{convert|1,214|ft}}, with dissolved components spreading as much as {{cvt|1,050|ft}} further.<ref>U.S. Dept. of State, [https://2012-keystonepipeline-xl.state.gov/documents/organization/221246.pdf ''Draft Supplemental Environmental Impact Statement'']. 1 March 2013, p.4.16-2.</ref> Early in his presidency, U.S. President Donald Trump overturned U.S. President Barack Obama's decision by signing executive memos in support of the Keystone XL pipeline in January 2017.<ref>{{Cite web|last=DiChristopher|first=Tom|date=2017-01-24|title=Trump signs executive actions to advance Keystone XL, Dakota Access pipelines|url=https://www.cnbc.com/2017/01/24/trump-to-advance-keystone-dakota-pipelines-with-executive-order-on-tuesday-nbc.html|access-date=2020-09-28|website=CNBC|language=en}}</ref> On January 20, 2021, President [[Joe Biden]] signed an [[Executive Order 13990|executive order]]<ref name="86 FR 7037">{{Cite journal |title=Protecting Public Health and the Environment and Restoring Science To Tackle the Climate Crisis |journal=[[Federal Register]] |volume=86 |page=7037 |url=https://www.federalregister.gov/documents/2021/01/25/2021-01765/protecting-public-health-and-the-environment-and-restoring-science-to-tackle-the-climate-crisis |language=en |date=January 20, 2021 |access-date=January 24, 2021}}</ref> to revoke the permit<ref name="84 FR 13101">{{Cite journal |title=Authorizing TransCanada Keystone Pipeline, L.P., To Construct, Connect, Operate, and Maintain Pipeline Facilities at the International Boundary Between the United States and Canada |journal=[[Federal Register]] |volume=84 |page=13,101 |url=https://www.federalregister.gov/documents/2019/04/03/2019-06654/authorizing-transcanada-keystone-pipeline-lp-to-construct-connect-operate-and-maintain-pipeline |language=en |date=March 29, 2019 |access-date=January 24, 2021}}</ref> that was granted to [[TC Energy Corporation]] for the Keystone XL Pipeline (Phase 4). On June 9, 2021, TC Energy abandoned plans for the Keystone XL Pipeline.<ref name="Cancellation">{{Cite news|last=Puko|first=Timothy|date=2021-06-09|title=Keystone XL Oil Project Abandoned by Developer|language=en-US|work=Wall Street Journal|url=https://www.wsj.com/articles/keystone-xl-oil-project-abandoned-by-developer-11623272010|access-date=2021-06-09|issn=0099-9660}}</ref><ref name="Cancellation-ap">{{Cite news|last=Brown|first=Matthew|date=2021-06-09|title=Keystone XL pipeline nixed after Biden stands firm on permit|language=en-US|work=AP News|url=https://apnews.com/article/donald-trump-joe-biden-keystone-pipeline-canada-environment-and-nature-141eabd7cca6449dfbd2dab8165812f2|access-date=2021-06-10}}</ref> ==Conservation== Since 2010, the North Plains Groundwater Conservation District, which encompasses eight counties north of [[Amarillo, Texas|Amarillo]], including [[Moore County, Texas|Moore]] and [[Dallam County, Texas|Dallam]] Counties, has offered a $300,000 annual demonstration project to conserve water that farmers pump from the Ogallala Aquifer. Participating farmers grow corn with just over half of the water that they would normally require to irrigate the fields, or they plant several weeks later than customary. Pivot sprinklers are used in the project, rather than the more expensive drip irrigation. According to district manager Steve Walthour, conservation is essential considering declining levels of the aquifer.<ref name="cons">{{cite web | url=http://lubbockonline.com/texas/2013-07-01/texas-push-show-farmers-how-save-water#.UdNzYBUo45t | title=In Texas, a push to show farmers how to save water | publisher=Lubbock Avalanche-Journal | work=lubbockonline.com/ | date=July 1, 2013 | access-date=August 1, 2013 | author=Gailbraith, Kate | quote=The North Plains district first imposed pumping limits in 2005 and tightened them in 2009. In 2005, it also began phasing in requirements for some wells to have meters. Both moves were controversial at the time. A larger groundwater district just south of North Plains, the 16-county High Plains Underground Water Conservation District, has struggled in its attempts to impose metering requirements and pumping limits. North Plains officials "just were a little further ahead of the curve", said David Brauer, who manages the Ogallala Aquifer program for a United States Department of Agriculture research laboratory in the Panhandle town of Bushland. A group from the Middle Trinity Groundwater Conservation District, southwest of Fort Worth, went to see Grall’s demonstration field last year and came away impressed. "I know my board president said it’d be nice to be able to do something like that here at home", said Joe Cooper, the general manager of the Middle Trinity district.}}</ref> The local non-profit organization Ogallala Commons, named for the aquifer itself, which not only collaborates and supports the local communicates, also works to conserve the Ogallala Aquifer and the surrounding area.<ref>{{cite journal |date=2003 |title=To Save the Ogallala Aquifer, Save Playa Lakes |url=https://books.google.com/books?id=EhhNAAAAYAAJ&q=Ogallala+Commons+nonprofit+organization |journal=Outdoor Oklahoma |publisher=Oklahoma Department of Wildlife Conservation |volume=59-60 |page=109 |access-date=December 3, 2015}}</ref><ref>{{cite news |url=https://www.highbeam.com/doc/1G1-319329921.html |archive-url=https://web.archive.org/web/20160220153054/https://www.highbeam.com/doc/1G1-319329921.html |url-status=dead |archive-date=February 20, 2016 |title=Co-Ops Rock! |date=February 18, 2013 |publisher=States News Service |access-date=December 3, 2015}}</ref><ref>{{cite news |url=http://www.lajuntatribunedemocrat.com/article/20150920/NEWS/150919866 |title=Grant awarded for youth engagement |date=September 20, 2015 |publisher=lajuntatribunedemocrat.com |access-date=December 3, 2015}}</ref> Eleven farmers in 2013 participated in the conservation program, with some planting in dry earth, rather than watered soil. They are leaving more space between plants, a technique that retains moisture for a longer period of time. Soil sensors permit farmers to gather accurate information about the moisture level of their crops. The motivation to save water comes from the district's regulations on extracting water from the aquifer. The [[United States Geological Survey]] determined the water level in the aquifer has dropped more in Texas than in any other state in the basin.<ref name="cons" /> Farmers on their own land may draw water from the aquifer without charge. Pumping costs are low because the fuel used, [[natural gas]], is inexpensive. The North Plains district first established limits on pumping in 2005 and tightened the regulations four years later. Certain wells are now required to have meters. Yet another challenge facing the district is that higher prices for crops{{when|date=April 2016}} have prompted some to plant additional fields and further increase the use of water from the aquifer.<ref name="cons"/> ==See also== {{portal|Water|Environment|Geography|History|United States}} {{div col|colwidth=35em}} *[[Aquifer]] *[[Environmental science]] *[[Fossil water]] *[[Great Recycling and Northern Development Canal]] *[[Groundwater]] *[[Guarani Aquifer]] *[[Hydrogeology]] *[[Irrigation]] *[[Laurentide Ice Sheet]] *[[List of aquifers in the United States]] *[[Llano Estacado]] *[[Water table]] *[[Western Interior Seaway]], the salt-water strait that once covered the area of today's Ogalalla Aquifer. {{div col end}} {{clear}} ==References== {{reflist|2}} ==External links== {{sister project links|auto=yes}} *[http://kerrcenter.com/wp-content/uploads/2014/11/ogallala_aquifer.pdf "The Ogallala Aquifer"] Manjula V. Guru, Agricultural Policy Specialist and James E. Horne, President & CEO, The Kerr Center for Sustainable Agriculture, Poteau, Oklahoma *[https://co.water.usgs.gov/nawqa/hpgw/ USGS High Plains Regional Groundwater Study] *[https://web.archive.org/web/20061026111611/http://archive.salon.com/tech/feature/2001/02/01/water_texas/ A Legal Fight in Texas over the Ogallala Aquifer] *[http://www.kgs.ku.edu/HighPlains/ Kansas Geological Survey information on the High Plains / Ogallala Aquifer] *[http://www.owrb.ok.gov/studies/reports/reports_pdf/high_plains_2.pdf Rapid Recharge of Parts of the High Plains Aquifer Indicated by a Reconnaissance Study in Oklahoma] {{Aquifers}} {{Agriculture in the United States}} {{Coord|36|59|26|N|101|26|52|W|region:US_type:waterbody|display=title}} [[Category:Aquifers in the United States]] [[Category:Great Plains]] [[Category:Regions of the Western United States]] [[Category:Geology of Oklahoma]] [[Category:Geology of South Dakota]] [[Category:Geology of Nebraska]] [[Category:Geology of Kansas]] [[Category:Geology of Wyoming]] [[Category:Geology of Texas]] [[Category:Geology of Colorado]] [[Category:Geology of New Mexico]] [[Category:Keystone Pipeline]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Agriculture in the United States
(
edit
)
Template:Aquifers
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite news
(
edit
)
Template:Cite report
(
edit
)
Template:Cite web
(
edit
)
Template:Clear
(
edit
)
Template:Convert
(
edit
)
Template:Coord
(
edit
)
Template:Cvt
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:More science citations needed
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Respell
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Sister project links
(
edit
)
Template:Stack begin
(
edit
)
Template:Stack end
(
edit
)
Template:Use American English
(
edit
)
Template:Use mdy dates
(
edit
)
Template:Webarchive
(
edit
)
Template:When
(
edit
)
Search
Search
Editing
Ogallala Aquifer
Add topic