Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Normal closure (group theory)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Smallest normal group containing a set}} {{About|the normal closure of a subset of a group|the normal closure of a field extension|Normal closure (field theory)}} {{Group theory sidebar}} In [[group theory]], the '''normal closure''' of a [[subset]] <math>S</math> of a [[Group (mathematics)|group]] <math>G</math> is the smallest [[normal subgroup]] of <math>G</math> containing <math>S.</math> == Properties and description == Formally, if <math>G</math> is a group and <math>S</math> is a subset of <math>G,</math> the normal closure <math>\operatorname{ncl}_G(S)</math> of <math>S</math> is the intersection of all normal subgroups of <math>G</math> containing <math>S</math>:<ref name=HEOB>{{cite book|title=Handbook of Computational Group Theory|author=Derek F. Holt|author2=Bettina Eick|author3=Eamonn A. O'Brien|publisher=CRC Press|year=2005|isbn=1-58488-372-3|page=[https://archive.org/details/handbookofcomput0000holt/page/14 14]|url=https://archive.org/details/handbookofcomput0000holt/page/14}}</ref> <math display="block">\operatorname{ncl}_G(S) = \bigcap_{S \subseteq N \triangleleft G} N.</math> The normal closure <math>\operatorname{ncl}_G(S)</math> is the smallest normal subgroup of <math>G</math> containing <math>S,</math><ref name="HEOB" /> in the sense that <math>\operatorname{ncl}_G(S)</math> is a subset of every normal subgroup of <math>G</math> that contains <math>S.</math> The subgroup <math>\operatorname{ncl}_G(S)</math> is the subgroup [[Generating set of a group|generated]] by the set <math>S^G=\{s^g : s \in S, g\in G\} = \{g^{-1}sg : s \in S, g\in G\}</math> of all [[Conjugacy class|conjugates]] of elements of <math>S</math> in <math>G.</math> Therefore one can also write the subgroup as the set of all products of conjugates of elements of <math>S</math> or their inverses: <math display="block">\operatorname{ncl}_G(S) = \{g_1^{-1}s_1^{\epsilon_1} g_1\cdots g_n^{-1}s_n^{\epsilon_n}g_n : n \geq 0, \epsilon_i = \pm 1, s_i\in S, g_i \in G\}.</math> Any normal subgroup is equal to its normal closure. The normal closure of the [[empty set]] <math>\varnothing</math> is the [[trivial subgroup]].<ref>{{cite book|last1=Rotman|first1=Joseph J.|title=An introduction to the theory of groups|series=Graduate Texts in Mathematics|date=1995|volume=148|publisher=[[Springer-Verlag]]|location=New York|isbn=0-387-94285-8|page=32|edition=Fourth|url=https://books.google.com/books?id=7-bBoQEACAAJ|mr=1307623|doi=10.1007/978-1-4612-4176-8}}</ref> A variety of other notations are used for the normal closure in the literature, including <math>\langle S^G\rangle,</math> <math>\langle S\rangle^G,</math> <math>\langle \langle S\rangle\rangle_G,</math> and <math>\langle\langle S\rangle\rangle^G.</math> Dual to the concept of normal closure is that of {{em|normal interior}} or {{em|[[normal core]]}}, defined as the join of all normal subgroups contained in <math>S.</math><ref>{{cite book|title=A Course in the Theory of Groups|volume=80|series=Graduate Texts in Mathematics|first=Derek J. S.|last=Robinson|publisher=[[Springer-Verlag]]|year=1996|isbn=0-387-94461-3|zbl=0836.20001|edition=2nd|page=16 }}</ref> == Group presentations == For a group <math>G</math> given by a [[Presentation of a group|presentation]] <math>G=\langle S \mid R\rangle</math> with generators <math>S</math> and defining [[relator]]s <math>R,</math> the presentation notation means that <math>G</math> is the [[quotient group]] <math>G = F(S) / \operatorname{ncl}_{F(S)}(R),</math> where <math>F(S)</math> is a [[free group]] on <math>S.</math><ref> {{cite book|last1=Lyndon|first1=Roger C.|author1-link=Roger Lyndon|last2=Schupp|first2=Paul E.|authorlink2=Paul Schupp|isbn=3-540-41158-5|mr=1812024|page=87|publisher=Springer-Verlag, Berlin|series=Classics in Mathematics|title=Combinatorial group theory|url=https://books.google.com/books?id=cOLrCAAAQBAJ|year=2001}} </ref> == References == {{reflist}} [[Category:Group theory]] [[Category:Closure operators]] {{group-theory-stub}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:About
(
edit
)
Template:Cite book
(
edit
)
Template:Em
(
edit
)
Template:Group-theory-stub
(
edit
)
Template:Group theory sidebar
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Search
Search
Editing
Normal closure (group theory)
Add topic