Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Matrix addition
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
[[File:Matrix addition qtl2.svg|thumb|Illustration of the addition of two matrices.]] {{Use American English|date = January 2019}} {{Short description|Notions of sums for matrices in linear algebra}} In [[mathematics]], '''matrix addition''' is the operation of adding two [[matrix (mathematics)|matrices]] by adding the corresponding entries together. For a [[Vector space|vector]], <math>\vec{v}\!</math>, adding two matrices would have the geometric effect of applying each matrix transformation separately onto <math>\vec{v}\!</math>, then adding the transformed vectors. :<math>\mathbf{A}\vec{v} + \mathbf{B}\vec{v} = (\mathbf{A} + \mathbf{B})\vec{v}\!</math> However, there are other operations that could also be considered [[addition]] for matrices, such as the [[direct sum]] and the [[Kronecker sum]]. ==Entrywise sum== Two matrices must have an equal number of rows and columns to be added.<ref>Elementary Linear Algebra by Rorres Anton 10e p53</ref> In which case, the sum of two matrices '''A''' and '''B''' will be a matrix which has the same number of rows and columns as '''A''' and '''B'''. The sum of '''A''' and '''B''', denoted {{nowrap|'''A''' + '''B'''}}, is computed by adding corresponding elements of '''A''' and '''B''':{{sfn|Lipschutz|Lipson|2017}}{{sfn|Riley|Hobson|Bence|2006}} :<math>\begin{align} \mathbf{A}+\mathbf{B} & = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\ \end{bmatrix} \\ & = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\ \end{bmatrix} \\ \end{align}\,\!</math> Or more concisely (assuming that {{nowrap|1='''A''' + '''B''' = '''C'''}}):<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Matrix Addition|url=https://mathworld.wolfram.com/MatrixAddition.html|access-date=2020-09-07|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|title=Finding the Sum and Difference of Two Matrices {{!}} College Algebra|url=https://courses.lumenlearning.com/ivytech-collegealgebra/chapter/finding-the-sum-and-difference-of-two-matrices/|access-date=2020-09-07|website=courses.lumenlearning.com}}</ref> :<math>c_{ij}=a_{ij}+b_{ij}</math> For example: :<math> \begin{bmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 7 & 5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 \\ 1+7 & 0+5 \\ 1+2 & 2+1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 8 & 5 \\ 3 & 3 \end{bmatrix} </math> Similarly, it is also possible to subtract one matrix from another, as long as they have the same dimensions. The difference of '''A''' and '''B''', denoted {{nowrap|'''A''' − '''B'''}}, is computed by subtracting elements of '''B''' from corresponding elements of '''A''', and has the same dimensions as '''A''' and '''B'''. For example: :<math> \begin{bmatrix} 1 & 3 \\ 1 & 0 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 7 & 5 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1-0 & 3-0 \\ 1-7 & 0-5 \\ 1-2 & 2-1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -6 & -5 \\ -1 & 1 \end{bmatrix} </math> ==<span id="directsum"></span>Direct sum== Another operation, which is used less often, is the direct sum (denoted by β). The Kronecker sum is also denoted β; the context should make the usage clear. The direct sum of any pair of matrices '''A''' of size ''m'' × ''n'' and '''B''' of size ''p'' × ''q'' is a matrix of size (''m'' + ''p'') × (''n'' + ''q'') defined as:<ref>{{MathWorld |id=MatrixDirectSum |title=Matrix Direct Sum}}</ref>{{sfn|Lipschutz|Lipson|2017}} :'''<math> \mathbf{A} \oplus \mathbf{B} = \begin{bmatrix} \mathbf{A} & \boldsymbol{0} \\ \boldsymbol{0} & \mathbf{B} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{mn} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & b_{11} & \cdots & b_{1q} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & b_{p1} & \cdots & b_{pq} \end{bmatrix} </math>''' For instance, :<math> \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 1 \end{bmatrix} \oplus \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 & 0 & 0 \\ 2 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} </math> The direct sum of matrices is a special type of [[block matrix]]. In particular, the direct sum of square matrices is a [[Block matrix#Block diagonal matrices|block diagonal matrix]]. The [[adjacency matrix]] of the union of disjoint [[Graph (discrete mathematics)|graphs]] (or [[multigraph]]s) is the direct sum of their adjacency matrices. Any element in the [[Direct sum of modules|direct sum]] of two [[vector space]]s of matrices can be represented as a direct sum of two matrices. In general, the direct sum of ''n'' matrices is:{{sfn|Lipschutz|Lipson|2017}} :<math> \bigoplus_{i=1}^{n} \mathbf{A}_{i} = \operatorname{diag}( \mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \ldots, \mathbf{A}_n) = \begin{bmatrix} \mathbf{A}_1 & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \mathbf{A}_2 & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \mathbf{A}_n \\ \end{bmatrix}\,\!</math> where the zeros are actually blocks of zeros (i.e., zero matrices). ==Kronecker sum== {{main article|Kronecker sum}} The Kronecker sum is different from the direct sum, but is also denoted by β. It is defined using the [[Kronecker product]] β and normal matrix addition. If '''A''' is ''n''-by-''n'', '''B''' is ''m''-by-''m'' and <math>\mathbf{I}_k</math> denotes the ''k''-by-''k'' [[identity matrix]] then the Kronecker sum is defined by: :<math> \mathbf{A} \oplus \mathbf{B} = \mathbf{A} \otimes \mathbf{I}_m + \mathbf{I}_n \otimes \mathbf{B}. </math> ==See also== * [[Matrix multiplication]] * [[Vector addition]] == Notes == {{reflist|2}} ==References== * {{cite book | last1=Lipschutz | first1=Seymour | last2=Lipson | first2=Marc | title=Schaum's Outline of Linear Algebra | edition=6 | publisher=McGraw-Hill Education | year=2017 | isbn=9781260011449}} * {{cite book | last1=Riley | first1=K.F. | last2=Hobson | first2=M.P. |last3=Bence |first3=S.J. | title=Mathematical methods for physics and engineering | edition=3 | publisher=Cambridge University Press | year=2006 | doi=10.1017/CBO9780511810763 | isbn=978-0-521-86153-3 | url=https://archive.org/details/mathematicalmeth00rile |url-access=registration}} ==External links== *{{PlanetMath |urlname=DirectSumOfMatrices |title= Direct sum of matrices}} * [https://web.archive.org/web/20120426083541/http://drexel28.wordpress.com/2010/12/22/direct-sum-of-linear-transformations-and-direct-sum-of-matrices-pt-iii/ Abstract nonsense: Direct Sum of Linear Transformations and Direct Sum of Matrices] * [http://www.mymathlib.com/matrices/arithmetic/direct_sum.html Mathematics Source Library: Arithmetic Matrix Operations] * [https://web.archive.org/web/20120514184901/http://www.aps.uoguelph.ca/~lrs/ABMethods/NOTES/CDmatrix.pdf Matrix Algebra and R] [[Category:Linear algebra]] [[Category:Bilinear maps]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Main article
(
edit
)
Template:MathWorld
(
edit
)
Template:Nowrap
(
edit
)
Template:PlanetMath
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Use American English
(
edit
)
Search
Search
Editing
Matrix addition
Add topic