Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Logical equivalence
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Concept in logic}} In [[logic]] and [[mathematics]], statements <math>p</math> and <math>q</math> are said to be '''logically equivalent''' if they have the same [[truth value]] in every [[model (logic)|model]].<ref>{{Cite book|title=Introduction to Mathematical Logic|url=https://archive.org/details/introductiontoma00mend|url-access=limited|last=Mendelson|first=Elliott|authorlink = Elliott Mendelson|year=1979|edition=2|pages=[https://archive.org/details/introductiontoma00mend/page/n63 56]|publisher=Van Nostrand |isbn=9780442253073}}</ref> The logical equivalence of <math>p</math> and <math>q</math> is sometimes expressed as <math>p \equiv q</math>, <math>p :: q</math>, <math>\textsf{E}pq</math>, or <math>p \iff q</math>, depending on the notation being used. However, these symbols are also used for [[material equivalence]], so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related. ==Logical equivalences== In logic, many common logical equivalences exist and are often listed as laws or properties. The following tables illustrate some of these. === General logical equivalences === {| class="wikitable" |- ! ''Equivalence'' !! ''Name'' |- | <math>p \wedge \top \equiv p</math><br /><math>p \vee \bot \equiv p</math> || Identity laws |- | <math>p \vee \top \equiv \top</math><br /><math>p \wedge \bot \equiv \bot</math> || Domination laws |- | <math>p \vee p \equiv p</math><br /><math>p \wedge p \equiv p</math> || Idempotent or tautology laws |- | <math>\neg (\neg p) \equiv p</math> || [[Double negation]] law |- | <math>p \vee q \equiv q \vee p</math><br /><math>p \wedge q \equiv q \wedge p</math> || [[Commutative law]]s |- | <math>(p \vee q) \vee r \equiv p \vee (q \vee r)</math><br /><math>(p \wedge q) \wedge r \equiv p \wedge (q \wedge r) </math>|| [[Associative law]]s |- | <math>p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)</math><br /><math>p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)</math> || [[Distributive law]]s |- | <math>\neg (p \wedge q) \equiv \neg p \vee \neg q</math><br /><math>\neg (p \vee q) \equiv \neg p \wedge \neg q</math> || [[De Morgan's laws]] |- | <math>p \vee (p \wedge q) \equiv p</math><br /><math>p \wedge (p \vee q) \equiv p</math> || [[Absorption law]]s |- | <math>p \vee \neg p \equiv \top</math><br /><math>p \wedge \neg p \equiv \bot</math> || Negation laws |} === Logical equivalences involving conditional statements === :#<math>p \rightarrow q \equiv \neg p \vee q</math> :#<math>p \rightarrow q \equiv \neg q \rightarrow \neg p</math> :#<math>p \vee q \equiv \neg p \rightarrow q</math> :#<math>p \wedge q \equiv \neg (p \rightarrow \neg q)</math> :#<math>\neg (p \rightarrow q) \equiv p \wedge \neg q</math> :#<math>(p \rightarrow q) \wedge (p \rightarrow r) \equiv p \rightarrow (q \wedge r)</math> :#<math>(p \rightarrow q) \vee (p \rightarrow r) \equiv p \rightarrow (q \vee r)</math> :#<math>(p \rightarrow r) \wedge (q \rightarrow r) \equiv (p \vee q) \rightarrow r</math> :#<math>(p \rightarrow r) \vee (q \rightarrow r) \equiv (p \wedge q) \rightarrow r</math> === Logical equivalences involving biconditionals === :#<math>p \leftrightarrow q \equiv (p \rightarrow q) \wedge (q \rightarrow p)</math> :#<math>p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q</math> :#<math>p \leftrightarrow q \equiv (p \wedge q) \vee (\neg p \wedge \neg q)</math> :#<math>\neg (p \leftrightarrow q) \equiv \neg p \leftrightarrow q</math> :#<math>\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q</math> :#<math>\neg (p \leftrightarrow q) \equiv p \oplus q</math> Where <math>\oplus</math> represents [[XOR]]. ==Examples== === In logic === The following statements are logically equivalent: #If Lisa is in [[Denmark]], then she is in [[Europe]] (a statement of the form <math>d \rightarrow e</math>). #If Lisa is not in Europe, then she is not in Denmark (a statement of the form <math>\neg e \rightarrow \neg d</math>). Syntactically, (1) and (2) are derivable from each other via the rules of [[contraposition]] and [[double negation]]. Semantically, (1) and (2) are true in exactly the same models (interpretations, valuations); namely, those in which either ''Lisa is in Denmark'' is false or ''Lisa is in Europe'' is true. (Note that in this example, [[classical logic]] is assumed. Some [[non-classical logic]]s do not deem (1) and (2) to be logically equivalent.) ==Relation to material equivalence== Logical equivalence is different from material equivalence. Formulas <math>p</math> and <math>q</math> are logically equivalent if and only if the statement of their material equivalence (<math>p \leftrightarrow q</math>) is a tautology.<ref>{{Cite book|title=Introduction to Logic|last1=Copi|first1=Irving|author1link = Irving Copi|last2=Cohen|first2=Carl|author2link = Carl Cohen (philosopher)|last3=McMahon|first3=Kenneth|publisher=Pearson|year=2014|edition=New International|pages=348}}</ref> The material equivalence of <math>p</math> and <math>q</math> (often written as <math>p \leftrightarrow q</math>) is itself another statement in the same [[formal system|object language]] as <math>p</math> and <math>q</math>. This statement expresses the idea "'<math>p</math> if and only if <math>q</math>'". In particular, the truth value of <math>p \leftrightarrow q</math> can change from one model to another. On the other hand, the claim that two formulas are logically equivalent is a statement in [[metalanguage]], which expresses a relationship between two statements <math>p</math> and <math>q</math>. The statements are logically equivalent if, in every model, they have the same truth value. ==See also== {{Portal|Philosophy|Psychology}} * [[Logical consequence|Entailment]] * [[Equisatisfiability]] * [[If and only if]] * [[Logical biconditional]] * [[Logical equality]] * [[Mathematical Operators (Unicode block)#Block|β‘]] the iff symbol (U+2261 ''IDENTICAL TO'') * [[Mathematical Operators (Unicode block)#Block|β·]] the ''a'' is to ''b'' '''as''' ''c'' is to ''d'' symbol (U+2237 ''PROPORTION'') * [[Arrows (Unicode_block)#Block|β]] the [[Blackboard bold|double struck]] biconditional (U+21D4 ''LEFT RIGHT DOUBLE ARROW'') * [[Arrow (symbol)#Arrows_in_Unicode|β]] the bidirectional arrow (U+2194 ''LEFT RIGHT ARROW'') == References == {{reflist}} {{Mathematical logic}} {{DEFAULTSORT:Logical Equivalence}} [[Category:Mathematical logic]] [[Category:Metalogic]] [[Category:Logical consequence]] [[Category:Equivalence (mathematics)]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Cite book
(
edit
)
Template:Mathematical logic
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Search
Search
Editing
Logical equivalence
Add topic