Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Landau's function
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function}} In [[mathematics]], '''Landau's function''' ''g''(''n''), named after [[Edmund Landau]], is defined for every [[natural number]] ''n'' to be the largest [[order (group theory)|order]] of an element of the [[symmetric group]] ''S''<sub>''n''</sub>. Equivalently, ''g''(''n'') is the largest [[least common multiple]] (lcm) of any [[integer partition|partition]] of ''n'', or the maximum number of times a [[permutation]] of ''n'' elements can be recursively applied to itself before it returns to its starting sequence. For instance, 5 = 2 + 3 and lcm(2,3) = 6. No other partition of 5 yields a bigger lcm, so ''g''(5) = 6. An element of order 6 in the group ''S''<sub>5</sub> can be written in cycle notation as (1 2) (3 4 5). Note that the same argument applies to the number 6, that is, ''g''(6) = 6. There are arbitrarily long sequences of consecutive numbers ''n'', ''n'' + 1, ..., ''n'' + ''m'' on which the function ''g'' is constant.<ref>{{citation|last=Nicolas|first=Jean-Louis|author-link=Jean-Louis Nicolas|title=Sur l’ordre maximum d’un élément dans le groupe ''S<sub>n</sub>'' des permutations|journal=[[Acta Arithmetica]]|volume=14|year=1968|pages=315–332|language=French}}</ref> The [[integer sequence]] ''g''(0) = 1, ''g''(1) = 1, ''g''(2) = 2, ''g''(3) = 3, ''g''(4) = 4, ''g''(5) = 6, ''g''(6) = 6, ''g''(7) = 12, ''g''(8) = 15, ... {{OEIS|A000793}} is named after [[Edmund Landau]], who proved in 1902<ref>Landau, pp. 92–103</ref> that :<math>\lim_{n\to\infty}\frac{\ln(g(n))}{\sqrt{n \ln(n)}} = 1</math> (where ln denotes the [[natural logarithm]]). Equivalently (using [[Big O notation|little-o notation]]), <math>g(n) = e^{(1+o(1))\sqrt{n\ln n}}</math>. More precisely,<ref name="mnr88">{{citation|last1=Massias|first1=J. P.|last2=Nicholas|first2=J. L.|last3=Robin|first3=G.|title=Évaluation asymptotique de l’ordre maximum d’un élément du groupe symétrique|journal=[[Acta Arithmetica]]|volume=50|year=1988|pages=221–242|language=French}}</ref> :<math>\ln g(n)=\sqrt{n\ln n}\left(1+\frac{\ln\ln n-1}{2\ln n}-\frac{(\ln\ln n)^2-6\ln\ln n+9}{8(\ln n)^2}+O\left(\left(\frac{\ln\ln n}{\ln n}\right)^3\right)\right).</math> If <math>\pi(x)-\operatorname{Li}(x)=O(R(x))</math>, where <math>\pi</math> denotes the [[prime counting function]], <math>\operatorname{Li}</math> the [[logarithmic integral function]] with [[inverse function|inverse]] <math>\operatorname{Li}^{-1}</math>, and we may take <math>R(x)=x\exp\bigl(-c(\ln x)^{3/5}(\ln\ln x)^{-1/5}\bigr)</math> for some constant ''c'' > 0 by Ford,<ref>{{cite journal |author = Kevin Ford |title=Vinogradov's Integral and Bounds for the Riemann Zeta Function |journal=Proc. London Math. Soc. |date=November 2002 |volume=85 |issue=3 |pages=565–633 |url=https://faculty.math.illinois.edu/~ford/wwwpapers/zetabd.pdf |doi=10.1112/S0024611502013655 |arxiv=1910.08209 |s2cid=121144007 }}</ref> then<ref name="mnr88" /> :<math>\ln g(n)=\sqrt{\operatorname{Li}^{-1}(n)}+O\bigl(R(\sqrt{n\ln n})\ln n\bigr).</math> The statement that :<math>\ln g(n)<\sqrt{\mathrm{Li}^{-1}(n)}</math> for all sufficiently large ''n'' is equivalent to the [[Riemann hypothesis]]. It can be shown that :<math>g(n)\le e^{n/e}</math> with the only equality between the functions at ''n'' = 0, and indeed :<math>g(n) \le \exp\left(1.05314\sqrt{n\ln n}\right).</math><ref>Jean-Pierre Massias, Majoration explicite de l'ordre maximum d'un élément du groupe symétrique, ''Ann. Fac. Sci. Toulouse Math.'' (5) 6 (1984), no. 3-4, pp. 269–281 (1985).</ref> ==Notes== <references/> == References == *[[E. Landau]], "Über die Maximalordnung der Permutationen gegebenen Grades [On the maximal order of permutations of given degree]", ''Arch. Math. Phys.'' Ser. 3, vol. 5, 1903. *W. Miller, "The maximum order of an element of a finite symmetric group", ''[[American Mathematical Monthly]]'', vol. 94, 1987, pp. 497–506. *J.-L. Nicolas, "On Landau's function ''g''(''n'')", in ''The Mathematics of Paul Erdős'', vol. 1, Springer-Verlag, 1997, pp. 228–240. ==External links== *{{OEIS el|sequencenumber=A000793|name=Landau's function on the natural numbers|formalname=Landau's function g(n): largest order of permutation of n elements. Equivalently, largest LCM of partitions of n}} [[Category:Group theory]] [[Category:Permutations]] [[Category:Arithmetic functions]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Citation
(
edit
)
Template:Cite journal
(
edit
)
Template:OEIS
(
edit
)
Template:OEIS el
(
edit
)
Template:Short description
(
edit
)
Search
Search
Editing
Landau's function
Add topic