Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dedekind group
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Group such that every its subgroup is normal.}} In [[group theory]], a '''Dedekind group''' is a [[group (mathematics)|group]] ''G'' such that every [[subgroup]] of ''G'' is [[normal subgroup|normal]]. All [[abelian group]]s are Dedekind groups. A non-abelian Dedekind group is called a '''Hamiltonian group'''.<ref>{{cite book|author=Hall |title=The theory of groups|year=1999|url={{Google books|plainurl=y|id=oyxnWF9ssI8C|page=190|text=Hamiltonian}}|page=190}}</ref> The most familiar (and smallest) example of a Hamiltonian group is the [[quaternion group]] of order 8, denoted by Q<sub>8</sub>. Dedekind and [[Reinhold Baer|Baer]] have shown (in the finite and respectively infinite order case) that every Hamiltonian group is a [[direct product of groups|direct product]] of the form {{nowrap|1=''G'' = Q<sub>8</sub> × ''B'' × ''D''}}, where ''B'' is an [[elementary abelian 2-group]], and ''D'' is a [[torsion group|torsion]] abelian group with all elements of odd order. Dedekind groups are named after [[Richard Dedekind]], who investigated them in {{harv|Dedekind|1897}}, proving a form of the above structure theorem (for [[finite group]]s). He named the non-abelian ones after [[William Rowan Hamilton]], the discoverer of [[quaternion]]s. In 1898 [[George Abram Miller|George Miller]] delineated the structure of a Hamiltonian group in terms of its [[order (group theory)|order]] and that of its subgroups. For instance, he shows "a Hamilton group of order 2<sup>''a''</sup> has {{nowrap|2<sup>2''a'' − 6</sup>}} quaternion groups as subgroups". In 2005 Horvat ''et al''<ref>{{cite arXiv|last1=Horvat|first1=Boris|last2=Jaklič|first2=Gašper|last3=Pisanski|first3=Tomaž|date=2005-03-09|title=On the Number of Hamiltonian Groups|eprint=math/0503183}}</ref> used this structure to count the number of Hamiltonian groups of any order {{nowrap|1=''n'' = 2<sup>''e''</sup>''o''}} where ''o'' is an odd integer. When {{nowrap|''e'' < 3}} then there are no Hamiltonian groups of order ''n'', otherwise there are the same number as there are Abelian groups of order ''o''. == Notes == {{Reflist}} == References == * {{Citation | last1=Dedekind | first1=Richard | author1-link=Richard Dedekind | title=Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind | doi=10.1007/BF01447922 | mr=1510943 | jfm = 28.0129.03 | year=1897 | journal=[[Mathematische Annalen]] | issn=0025-5831 | volume=48 | issue=4 | pages=548–561 | s2cid=119992274 | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002256258}}. * Baer, R. Situation der Untergruppen und Struktur der Gruppe, Sitz.-Ber. Heidelberg. Akad. Wiss.2, 12–17, 1933. * {{Citation |title=The theory of groups |last=Hall |first=Marshall |author-link=Marshall Hall (mathematician) |year=1999 |publisher=AMS Bookstore |isbn=978-0-8218-1967-8 |page=190 }}. * {{citation | last1 = Horvat | first1 = Boris | last2 = Jaklič | first2 = Gašper | last3 = Pisanski | first3 = Tomaž |author3-link=Tomaž Pisanski|year = 2005 | title = On the number of Hamiltonian groups | journal = Mathematical Communications | volume = 10 | issue = 1| pages = 89–94 | bibcode = 2005math......3183H | arxiv = math/0503183 }}. *{{citation|first=G. A.|last=Miller|year=1898|title=On the Hamilton groups|journal= [[Bulletin of the American Mathematical Society]] |volume=4|issue=10|pages=510–515|doi=10.1090/s0002-9904-1898-00532-3|doi-access=free}}. *{{citation|first=Olga|last=Taussky|author-link=Olga Taussky-Todd|year=1970|title=Sums of squares|journal=[[American Mathematical Monthly]]|volume= 77|issue=8|pages=805–830|mr=0268121|doi=10.2307/2317016|jstor=2317016|hdl=10338.dmlcz/120593|hdl-access=free}}. [[Category:Group theory]] [[Category:Properties of groups]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Harv
(
edit
)
Template:Nowrap
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Search
Search
Editing
Dedekind group
Add topic