Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
De Bruijn–Newman constant
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical constant}} {{Distinguish|Von Mangoldt function}}{{For|other uses of "Λ"|Lambda}} {{lowercase title}} The '''de Bruijn–Newman constant''', denoted by '''<math>\Lambda</math>''' and named after [[Nicolaas Govert de Bruijn]] and [[Charles M. Newman|Charles Michael Newman]], is a [[mathematical constant]] defined via the [[zero of a function|zeros]] of a certain [[function (mathematics)|function]] <math>H(\lambda,z)</math>, where <math>\lambda</math> is a [[real number|real]] parameter and <math>z</math> is a [[complex number|complex]] variable. More precisely, :<math>H(\lambda, z):=\int_{0}^{\infty} e^{\lambda u^{2}} \Phi(u) \cos (z u) \, du</math>, where <math>\Phi</math> is the [[super-exponential function|super-exponentially]] decaying function :<math>\Phi(u) = \sum_{n=1}^{\infty} (2\pi^2n^4e^{9u}-3\pi n^2 e^{5u} ) e^{-\pi n^2 e^{4u}}</math> and <math>\Lambda</math> is the unique real number with the property that <math>H</math> has only real zeros [[if and only if]] <math>\lambda\geq \Lambda</math>. The constant is closely connected with [[Riemann hypothesis]]. Indeed, the Riemann hypothesis is equivalent to the [[conjecture]] that <math>\Lambda\leq 0</math>.<ref name="tao2">{{cite web|url=https://terrytao.wordpress.com/2018/01/19/the-de-bruijn-newman-constant-is-non-negativ/|title=The De Bruijn-Newman constant is non-negative|date=19 January 2018|access-date=2018-01-19}} (announcement post)</ref> Brad Rodgers and [[Terence Tao]] [[mathematical proof|proved]] that <math>\Lambda\geq 0</math>, so the Riemann hypothesis is equivalent to <math>\Lambda=0</math>.<ref name=":0">{{Cite journal|last1=Rodgers|first1=Brad|last2=Tao|first2=Terence|author-link2=Terence Tao|title=The de Bruijn–Newman Constant is Non-Negative|date=2020|journal=Forum of Mathematics, Pi|language=en|volume=8|pages=e6|doi=10.1017/fmp.2020.6|issn=2050-5086|doi-access=free|arxiv=1801.05914}}</ref> A simplified proof of the Rodgers–Tao result was later given by Alexander Dobner.<ref>{{cite arXiv |last1=Dobner |first1=Alexander |date=2020|title=A New Proof of Newman's Conjecture and a Generalization |class=math.NT |eprint=2005.05142}}</ref> == History == De Bruijn showed in 1950 that <math>H</math> has only real zeros if <math>\lambda\geq 1/2</math>, and moreover, that if <math>H</math> has only real zeros for some <math>\lambda</math>, <math>H</math> also has only real zeros if <math>\lambda</math> is replaced by any larger value.<ref name="de Bruijn roots">{{cite journal|last1=de Bruijn|first1=N.G.|author-link=Nicolaas Govert de Bruijn|year=1950|title=The Roots of Triginometric Integrals|url=https://pure.tue.nl/ws/files/1769368/597490.pdf|journal=Duke Math. J.|volume=17|issue=3|pages=197–226|doi=10.1215/s0012-7094-50-01720-0|zbl=0038.23302}}</ref> Newman proved in 1976 the existence of a constant <math>\Lambda</math> for which the "if and only if" claim holds; and this then implies that <math>\Lambda</math> is unique. Newman also conjectured that <math>\Lambda\geq 0</math>,<ref>{{cite journal|last1=Newman|first1=C.M.|year=1976|title=Fourier Transforms with only Real Zeros|journal=Proc. Amer. Math. Soc.|volume=61|issue=2|pages=245–251|doi=10.1090/s0002-9939-1976-0434982-5|zbl=0342.42007|doi-access=free}}</ref> which was proven forty years later, by Brad Rodgers and Terence Tao in 2018. == Upper bounds == De Bruijn's upper bound of <math>\Lambda\le 1/2</math> was not improved until 2008, when Ki, Kim and Lee proved <math>\Lambda< 1/2</math>, making the [[inequality (mathematics)|inequality]] strict.<ref name="Ki Kim Lee">{{citation |title = On the de Bruijn–Newman constant |mr=2531375 |journal = [[Advances in Mathematics]] |volume = 222 |number = 1 |pages = 281–306 |year = 2009 |issn = 0001-8708 |doi = 10.1016/j.aim.2009.04.003 |doi-access=free |url = http://web.yonsei.ac.kr/haseo/p23-reprint.pdf |last1 = Ki |first1 = Haseo |last2 = Kim |first2 = Young-One |last3 = Lee |first3 = Jungseob }} ([https://terrytao.wordpress.com/2018/01/24/polymath-proposal-upper-bounding-the-de-bruijn-newman-constant/ discussion]).</ref> In December 2018, the 15th [[Polymath project]] improved the bound to <math>\Lambda\leq 0.22</math>.<ref name="Polymath15">{{Citation|title=Effective approximation of heat flow evolution of the Riemann <math>\xi</math>-function, and an upper bound for the de Bruijn-Newman constant|type=preprint|author=D.H.J. Polymath|url=https://github.com/km-git-acc/dbn_upper_bound/blob/master/Writeup/debruijn.pdf|date=20 December 2018|access-date=23 December 2018}}</ref><ref>{{citation |title=Going below <math>\Lambda\leq 0.22?</math> |date=4 May 2018|url=https://terrytao.wordpress.com/2018/05/04/polymath15-ninth-thread-going-below-0-22/}}</ref><ref>{{citation |title=Zero-free regions |url=http://michaelnielsen.org/polymath1/index.php?title=Zero-free_regions}}</ref> A manuscript of the Polymath work was submitted to arXiv in late April 2019,<ref name="Polymath1"> {{cite arXiv | eprint=1904.12438 |title = Effective approximation of heat flow evolution of the Riemann ξ function, and a new upper bound for the de Bruijn-Newman constant |last1=Polymath |first1=D.H.J. | class=math.NT | year = 2019}}(preprint)</ref> and was published in the journal Research In the Mathematical Sciences in August 2019.<ref name="Polymath3">{{citation |title = Effective approximation of heat flow evolution of the Riemann ξ function, and a new upper bound for the de Bruijn-Newman constant |journal = Research in the Mathematical Sciences |volume = 6 |issue = 3 |year = 2019 |doi = 10.1007/s40687-019-0193-1 |last = Polymath |first = D.H.J. |arxiv = 1904.12438 |bibcode = 2019arXiv190412438P |s2cid = 139107960 }}</ref> This bound was further slightly improved in April 2020 by Platt and [[Timothy Trudgian|Trudgian]] to <math>\Lambda\leq 0.2</math>.<ref name="Platt+Trudgian"> {{cite journal | arxiv=2004.09765 |title = The Riemann hypothesis is true up to 3·1012 |last1=Platt |first1=Dave | last2=Trudgian |first2=Tim |author2-link=Timothy Trudgian |journal = Bulletin of the London Mathematical Society | year = 2021|volume = 53 |issue = 3 |pages = 792–797 |doi = 10.1112/blms.12460 |s2cid = 234355998 }}(preprint)</ref> == Historical bounds == {| class="wikitable" |+ Historical lower bounds |- !Year !! Lower bound on Λ !! Authors |- |1987 ||−50<ref>{{Cite journal|last1=Csordas|first1=G.|last2=Norfolk|first2=T. S.|last3=Varga|first3=R. S.|date=1987-09-01|title=A low bound for the de Bruijn-newman constant Λ|journal=Numerische Mathematik|language=en|volume=52|issue=5|pages=483–497|doi=10.1007/BF01400887|s2cid=124008641|issn=0945-3245}}</ref> || Csordas, G.; Norfolk, T. S.; Varga, R. S. |- |1990 ||−5<ref>{{Cite journal|last=te Riele|first=H. J. J.|date=1990-12-01|title=A new lower bound for the de Bruijn-Newman constant|journal=Numerische Mathematik|language=en|volume=58|issue=1|pages=661–667|doi=10.1007/BF01385647|issn=0945-3245}}</ref> || te Riele, H. J. J. |- |1991 |−0.0991<ref>{{Cite journal|last1=Csordas|first1=G.|last2=Ruttan|first2=A.|last3=Varga|first3=R. S.|date=1991-06-01|title=The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis|journal=Numerical Algorithms|language=en|volume=1|issue=2|pages=305–329|doi=10.1007/BF02142328|bibcode=1991NuAlg...1..305C|s2cid=22606966|issn=1572-9265}}</ref> || Csordas, G.; Ruttan, A.; Varga, R. S. |- |1993 ||−5.895{{e|−9}}<ref>{{cite journal |last1=Csordas | first1=G. |last2=Odlyzko | first2=A.M. | author2-link=Andrew Odlyzko |last3=Smith | first3=W. | last4=Varga | first4=R.S. | author4-link=Richard S. Varga |title=A new Lehmer pair of zeros and a new lower bound for the De Bruijn–Newman constant Lambda |journal=[[Electronic Transactions on Numerical Analysis]] |volume=1 |pages=104–111 |year=1993 |url=http://www.dtc.umn.edu/~odlyzko/doc/arch/debruijn.constant.pdf |access-date=June 1, 2012 | zbl=0807.11059 }}</ref> || Csordas, G.; Odlyzko, A.M.; Smith, W.; Varga, R.S. |- |2000 ||−2.7{{e|−9}}<ref>{{cite journal |first1=A.M. |last1=Odlyzko | author-link=Andrew Odlyzko | title=An improved bound for the de Bruijn–Newman constant |journal=Numerical Algorithms |volume=25 |pages=293–303 |year=2000 |issue=1 | zbl=0967.11034 |bibcode=2000NuAlg..25..293O |doi=10.1023/A:1016677511798 |s2cid=5824729 }}</ref> || Odlyzko, A.M. |- |2011 ||−1.1{{e|−11}}<ref>{{cite journal | last1 = Saouter | first1 = Yannick | last2 = Gourdon | first2 = Xavier | last3 = Demichel | first3 = Patrick | doi = 10.1090/S0025-5718-2011-02472-5 | issue = 276 | journal = Mathematics of Computation | mr = 2813360 | pages = 2281–2287 | title = An improved lower bound for the de Bruijn–Newman constant | volume = 80 | year = 2011| doi-access = free }}</ref> || Saouter, Yannick; Gourdon, Xavier; Demichel, Patrick |- |2018 || ≥0<ref name=":0" /> || Rodgers, Brad; Tao, Terence |} {| class="wikitable" |+ Historical upper bounds |- !Year !! Upper bound on Λ !! Authors |- |1950 ||≤ 1/2<ref name="de Bruijn roots" /> || de Bruijn, N.G. |- |2008 ||< 1/2<ref name="Ki Kim Lee" /> || Ki, H.; Kim, Y-O.; Lee, J. |- |2019 ||≤ 0.22<ref name="Polymath15" /> || Polymath, D.H.J. |- |2020 ||≤ 0.2<ref name="Platt+Trudgian" /> || Platt, D.; Trudgian, T. |} ==References== {{Reflist}} ==External links== * {{MathWorld|urlname=deBruijn-NewmanConstant|title=de Bruijn–Newman Constant}} {{DEFAULTSORT:De Bruijn-Newman constant}} [[Category:Mathematical constants]] [[Category:Analytic number theory]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Distinguish
(
edit
)
Template:E
(
edit
)
Template:For
(
edit
)
Template:Lowercase title
(
edit
)
Template:MathWorld
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Search
Search
Editing
De Bruijn–Newman constant
Add topic