Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Covalent radius
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Measure of the size of an atom that forms part of one covalent bond}} {{Atomic radius}} [[File:Radis_d'un_àtom.png | thumb | right]] The '''covalent radius''', ''r''<sub>cov</sub>, is a measure of the size of an [[atom]] that forms part of one [[covalent bond]]. It is usually measured either in [[picometre]]s (pm) or [[angstrom]]s (Å), with 1 Å = 100 pm. In principle, the sum of the two covalent radii should equal the covalent [[bond length]] between two atoms, ''R''(AB) = ''r''(A) + ''r''(B). Moreover, different radii can be introduced for single, double and triple bonds (r<sub>1</sub>, r<sub>2</sub> and r<sub>3</sub> below), in a purely operational sense. These relationships are certainly not exact because the size of an atom is not constant but depends on its chemical environment. For [[heteroatom]]ic A–B bonds, ionic terms may enter. Often the [[polar covalent bond]]s are shorter than would be expected based on the sum of covalent radii. Tabulated values of covalent radii are either average or idealized values, which nevertheless show a certain [[transferability (chemistry)|transferability]] between different situations, which makes them useful. The bond lengths ''R''(AB) are measured by [[X-ray diffraction]] (more rarely, [[neutron diffraction]] on [[molecular crystal]]s). [[Rotational spectroscopy]] can also give extremely accurate values of bond lengths. For [[homonuclear]] A–A bonds, [[Linus Pauling]] took the covalent radius to be half the single-bond length in the element, e.g. ''R''(H–H, in H<sub>2</sub>) = 74.14 pm so ''r''<sub>cov</sub>(H) = 37.07 pm: in practice, it is usual to obtain an average value from a variety of covalent compounds, although the difference is usually small. Sanderson has published a recent set of non-polar covalent radii for the main-group elements,<ref>{{ cite journal |doi=10.1021/ja00346a026 |author=Sanderson, R. T. |year=1983| title=Electronegativity and Bond Energy|journal=Journal of the American Chemical Society| volume=105|pages=2259–2261 |issue=8 }}</ref> but the availability of large collections of bond lengths, which are more [[Transferability (chemistry)|transferable]], from the [[Cambridge Crystallographic Database]]<ref>{{ cite journal|author1=Allen, F. H. |author2=Kennard, O. |author3=Watson, D. G. |author4=Brammer, L. |author5=Orpen, A. G. |author6=Taylor, R. |year=1987|title=Table of Bond Lengths Determined by X-Ray and Neutron Diffraction|journal=J. Chem. Soc., Perkin Trans. 2| doi=10.1039/P298700000S1|pages= S1–S19| issue=12}}</ref><ref>{{cite journal|last1=Orpen|first1=A. Guy|last2=Brammer|first2=Lee|last3=Allen|first3=Frank H.|last4=Kennard|first4=Olga|last5=Watson|first5=David G.|last6=Taylor|first6=Robin|title=Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals|journal=Journal of the Chemical Society, Dalton Transactions|pages=S1|year=1989|doi=10.1039/DT98900000S1|issue=12}}</ref> has rendered covalent radii obsolete in many situations. ==Average radii== The values in the table below are based on a statistical analysis of more than 228,000 experimental bond lengths from the Cambridge Structural Database.<ref name="CSD">{{cite journal|author1=Beatriz Cordero |author2=Verónica Gómez |author3=Ana E. Platero-Prats |author4=Marc Revés |author5=Jorge Echeverría |author6=Eduard Cremades |author7=Flavia Barragán |author8=Santiago Alvarez |s2cid=244110 |title=Covalent radii revisited | journal=Dalton Trans.|year=2008|pages=2832–2838|doi=10.1039/b801115j|issue=21|pmid=18478144 }}</ref> For carbon, values are given for the different [[Orbital hybridisation|hybridisations]] of the orbitals. {| style="text-align: center; border: none; min-width:70em" cellpadding="2" cellspacing="0" |+ '''Covalent radii in pm from analysis of the [[Cambridge Structural Database]], which contains about 1,030,000 crystal structures'''<ref name="CSD"/> |- style="background: #7DF9FF;" |H |colspan="17" style="background: #ffffff;" | |He |- style="background: #efefef;" |1||colspan="17" style="background: #ffffff;"| ||2 |- |31(5)||colspan="17" | ||28 |- style="background: #7DF9FF;" |Li||Be||colspan="11" style="background: #ffffff;"| ||B||C||N||O||F||Ne |- style="background: #efefef;" |3||4||colspan="11" style="background: #ffffff;"|Radius ([[standard deviation]]) / [[Picometre|pm]] |5||6||7||8||9||10 |- valign="top" |128(7)||96(3)||colspan="11" | ||84(3)||sp<sup>3</sup> 76(1)<br>sp<sup>2</sup> 73(2)<br>sp 69(1)||71(1)||66(2)||57(3)||58 |- style="background: #7DF9FF;" |Na||Mg||colspan="11" style="background: #ffffff;" | ||Al||Si||P||S||Cl||Ar |- style="background: #efefef;" |11||12||colspan="11" style="background: #ffffff;" | ||13||14||15||16||17||18 |- |166(9)||141(7)|| colspan="11" | ||121(4)||111(2)||107(3)||105(3)||102(4)||106(10) |- style="background: #7DF9FF;" |K||Ca||style="background: #ffffff;" | ||Sc||Ti||V||Cr||Mn||Fe||Co||Ni||Cu||Zn||Ga||Ge||As||Se||Br||Kr |- style="background: #efefef;" |19||20||style="background: #ffffff;" | ||21||22||23||24||25||26||27||28||29||30||31||32||33||34||35||36 |- valign="top" |203(12)||176(10)||style="background: #ffffff;" | ||170(7)||160(8)||153(8)||139(5)||l.s. 139(5)<br>h.s. 161(8)||l.s. 132(3)<br>h.s. 152(6)||l.s. 126(3)<br>h.s. 150(7)||124(4)||132(4)||122(4)||122(3)||120(4)||119(4)||120(4)||120(3)||116(4) |- style="background: #7DF9FF;" |Rb||Sr||style="background: #ffffff;" | ||Y||Zr||Nb||Mo||Tc||Ru||Rh||Pd||Ag||Cd||In||Sn||Sb||Te||I||Xe |- style="background: #efefef;" |37||38||style="background: #ffffff;" | ||39||40||41||42||43||44||45||46||47||48||49||50||51||52||53||54 |- |220(9)||195(10)|| ||190(7)||175(7)||164(6)||154(5)||147(7)||146(7)||142(7)||139(6)||145(5)||144(9)||142(5)||139(4)||139(5)||138(4)||139(3)||140(9) |- style="background: #7DF9FF;" |Cs||Ba||style="background: #ffffff;" |*||Lu||Hf||Ta||W||Re||Os||Ir||Pt||Au||Hg||Tl||Pb||Bi||Po||At||Rn |- style="background: #efefef;" |55||56||style="background: #ffffff;" | ||71||72||73||74||75||76||77||78||79||80||81||82||83||84||85||86 |- |244(11)||215(11)|| ||187(8)||175(10)||170(8)||162(7)||151(7)||144(4)||141(6)||136(5)||136(6)||132(5)||145(7)||146(5)||148(4)||140(4)||150||150 |- style="background: #7DF9FF;" |Fr||Ra||style="background: #ffffff;"|** |- style="background: #efefef;" |87||88 |- |260||221(2) |- | |- style="background: #7DF9FF;" |colspan="2" style="background: #ffffff;"| ||style="background: #ffffff;"|*||La||Ce||Pr||Nd||Pm||Sm||Eu||Gd||Tb||Dy||Ho||Er||Tm||Yb |- style="background: #efefef;" |colspan="3" style="background: #ffffff;"| ||57||58||59||60||61||62||63||64||65||66||67||68||69||70 |- |colspan="3" style="background: #ffffff;"| ||207(8)||204(9)||203(7)||201(6)||199||198(8)||198(6)||196(6)||194(5)||192(7)||192(7)||189(6)||190(10)||187(8) |- style="background: #7DF9FF;" |colspan="2" style="background: #ffffff;"| ||style="background: #ffffff;"|**||Ac||Th||Pa||U||Np||Pu||Am||Cm |- style="background: #efefef;" |colspan="3" style="background: #ffffff;"| ||89||90||91||92||93||94||95||96 |- |colspan="3" style="background: #ffffff;"| ||215||206(6)||200||196(7)||190(1)||187(1)||180(6)||169(3) |} ==Radius for multiple bonds== A different approach is to make a self-consistent fit for all elements in a smaller set of molecules. This was done separately for single,<ref name="Calc1">{{cite journal|author1=P. Pyykkö|author2=M. Atsumi|year=2009|title=Molecular Single-Bond Covalent Radii for Elements 1-118|journal=Chemistry: A European Journal|volume=15|issue=1|pages=186–197|doi=10.1002/chem.200800987|pmid=19058281}}</ref> double,<ref name="Calc2">{{cite journal|author1=P. Pyykkö|author2=M. Atsumi|year=2009|title=Molecular Double-Bond Covalent Radii for Elements Li–E112|journal=Chemistry: A European Journal|volume=15|issue=46|pages=12770–12779|doi=10.1002/chem.200901472|pmid=19856342}}. Figure 3 of this paper contains all radii of refs. [5-7]. The mean-square deviation of each set is 3 pm.</ref> and triple bonds<ref name="Calc3">{{cite journal|author1=P. Pyykkö|author2=S. Riedel|author3=M. Patzschke|year=2005|title=Triple-Bond Covalent Radii|journal=Chemistry: A European Journal|volume=11|issue=12|pages=3511–3520|doi=10.1002/chem.200401299|pmid=15832398}}</ref> up to superheavy elements. Both experimental and computational data were used. The single-bond results are often similar to those of Cordero et al.<ref name="CSD" /> When they are different, the [[coordination number]]s used can be different. This is notably the case for most (d and f) transition metals. Normally one expects that ''r''<sub>1</sub> > ''r''<sub>2</sub> > ''r''<sub>3</sub>. Deviations may occur for weak multiple bonds, if the differences of the ligand are larger than the differences of ''R'' in the data used. Note that elements up to [[atomic number]] 118 ([[oganesson]]) have now been experimentally produced and that there are chemical studies on an increasing number of them. The same, self-consistent approach was used to fit tetrahedral covalent radii for 30 elements in 48 crystals with subpicometer accuracy.<ref name="Tet">{{cite journal|author1=P. Pyykkö|year=2012|title=Refitted tetrahedral covalent radii for solids|journal=Physical Review B|volume=85|issue=2|pages=024115, 7 p|bibcode=2012PhRvB..85b4115P|doi=10.1103/PhysRevB.85.024115}}</ref> {| style="text-align: center; border: none; min-width:70em" cellpadding="2" cellspacing="0" |+ '''Single-,<ref name="Calc1" /> double-,<ref name="Calc2" /> and triple-bond<ref name="Calc3" /> covalent radii, determined using typically <br>400 experimental or calculated primary distances, ''R'', per set.''' |- style="background: #7DF9FF;" |H | colspan="17" style="background: #ffffff;" | |He |- style="background: #efefef;" |1|| colspan="17" style="background: #ffffff;" | ||2 |- |32<br>-<br>-|| colspan="17" | ||46<br>-<br>- |- style="background: #7DF9FF;" |Li||Be|| colspan="11" style="background: #ffffff;" | ||B||C||N||O||F||Ne |- style="background: #efefef;" |3||4|| colspan="11" style="background: #ffffff;" |Radius / [[Picometre|pm]]:||5||6||7||8||9||10 |- valign="top" |133<br>124<br>-||102<br>90<br>85|| colspan="11" |single-bond double-bond triple-bond |85<br>78<br>73||75<br>67<br>60||71<br>60<br>54||63<br>57<br>53||64<br>59<br>53||67<br>96<br>- |- style="background: #7DF9FF;" |Na||Mg|| colspan="11" style="background: #ffffff;" | ||Al||Si||P||S||Cl||Ar |- style="background: #efefef;" |11||12|| colspan="11" style="background: #ffffff;" | ||13||14||15||16||17||18 |- |155<br>160<br>-||139<br>132<br>127|| colspan="11" | ||126<br>113<br>111||116<br>107<br>102||111<br>102<br>94||103<br>94<br>95||99<br>95<br>93||96<br>107<br>96 |- style="background: #7DF9FF;" |K||Ca||style="background: #ffffff;" | ||Sc||Ti||V||Cr||Mn||Fe||Co||Ni||Cu||Zn||Ga||Ge||As||Se||Br||Kr |- style="background: #efefef;" |19||20||style="background: #ffffff;" | ||21||22||23||24||25||26||27||28||29||30||31||32||33||34||35||36 |- valign="top" |196<br>193<br>-||171<br>147<br>133||style="background: #ffffff;" | ||148<br>116<br>114 |136<br>117<br>108||134<br>112<br>106||122<br>111<br>103||119<br>105<br>103||116<br>109<br>102||111<br>103<br>96||110<br>101<br>101||112<br>115<br>120||118<br>120<br>- |124<br>117<br>121||121<br>111<br>114||121<br>114<br>106||116<br>107<br>107||114<br>109<br>110||117<br>121<br>108 |- style="background: #7DF9FF;" |Rb||Sr||style="background: #ffffff;" | ||Y||Zr||Nb||Mo||Tc||Ru||Rh||Pd||Ag||Cd||In||Sn||Sb||Te||I||Xe |- style="background: #efefef;" |37||38||style="background: #ffffff;" | ||39||40||41||42||43||44||45||46||47||48||49||50||51||52||53||54 |- |210<br>202<br>-||185<br>157<br>139||style="background: #ffffff;" | ||163<br>130<br>124 |154<br>127<br>121||147<br>125<br>116||138<br>121<br>113||128<br>120<br>110||125<br>114<br>103||125<br>110<br>106||120<br>117<br>112||128<br>139<br>137||136<br>144<br>- |142<br>136<br>146||140<br>130<br>132||140<br>133<br>127||136<br>128<br>121||133<br>129<br>125||131<br>135<br>122 |- style="background: #7DF9FF;" |Cs||Ba|| style="background: #ffffff;" |*||Lu||Hf||Ta||W||Re||Os||Ir||Pt||Au||Hg||Tl||Pb||Bi||Po||At||Rn |- style="background: #efefef;" |55||56|| style="background: #ffffff;" | ||71||72||73||74||75||76||77||78||79||80||81||82||83||84||85||86 |- |232<br>209<br>-||196<br>161<br>149|| ||162<br>131<br>131 |152<br>128<br>122||146<br>126<br>119||137<br>120<br>115||131<br>119<br>110||129<br>116<br>109||122<br>115<br>107||123<br>112<br>110||124<br>121<br>123||133<br>142<br>- |144<br>142<br>150||144<br>135<br>137||151<br>141<br>135||145<br>135<br>129||147<br>138<br>138||142<br>145<br>133 |- style="background: #7DF9FF;" |Fr||Ra|| style="background: #ffffff;" |**||Lr ||Rf||Db||Sg||Bh||Hs||Mt||Ds||Rg||Cn||Nh||Fl||Mc||Lv||Ts||Og |- style="background: #efefef;" |87||88|| style="background: #ffffff;" | ||103||104||105||106||107||108||109||110||111||112||113||114||115||116||117||118 |- |223<br>218<br>-||201<br>173<br>159|| ||161<br>141<br>- |157<br>140<br>131||149<br>136<br>126||143<br>128<br>121||141<br>128<br>119||134<br>125<br>118||129<br>125<br>113||128<br>116<br>112||121<br>116<br>118||122<br>137<br>130||136<br>-<br>-||143<br>-<br>-||162<br>-<br>-||175<br>-<br>-||165<br>-<br>-||157<br>-<br>- |- | |- style="background: #7DF9FF;" | colspan="2" style="background: #ffffff;" | ||style="background: #ffffff;" |*||La||Ce||Pr||Nd||Pm||Sm||Eu||Gd||Tb||Dy||Ho||Er||Tm||Yb |- style="background: #efefef;" | colspan="3" style="background: #ffffff;" | ||57||58||59||60||61||62||63||64||65||66||67||68||69||70 |- valign="top" | colspan="3" style="background: #ffffff;" | ||180<br>139<br>139||163<br>137<br>131||176<br>138<br>128||174<br>137<br>-||173<br>135<br>-||172<br>134<br>-||168<br>134<br>-||169<br>135<br>132||168<br>135<br>-||167<br>133<br>-||166<br>133<br>-||165<br>133<br>-||164<br>131<br>-||170<br>129<br>- |- style="background: #7DF9FF;" | colspan="2" style="background: #ffffff;" | ||style="background: #ffffff;" |**||Ac||Th||Pa||U||Np||Pu||Am||Cm||Bk||Cf||Es||Fm||Md||No |- style="background: #efefef;" | colspan="3" style="background: #ffffff;" | ||89||90||91||92||93||94||95||96||97||98||99||100||101||102 |- valign="top" | colspan="3" style="background: #ffffff;" | ||186<br>153<br>140||175<br>143<br>136||169<br>138<br>129||170<br>134<br>118||171<br>136<br>116||172<br>135<br>-||166<br>135<br>-||166<br>136<br>-||168<br>139<br>-||168<br>140<br>-||165<br>140<br>-||167<br>-<br>-||173<br>139<br>-||176<br>-<br>- |} == See also == * [[Atomic radii of the elements (data page)]] * [[Ionization energy]] * [[Electron affinity]] * [[Electron configuration]] * [[Periodic table]] == References == {{reflist}} [[Category:Chemical properties]] [[Category:Chemical bonding]] [[Category:Atomic radius]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Atomic radius
(
edit
)
Template:Cite journal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Search
Search
Editing
Covalent radius
Add topic