Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bohr magneton
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Unit of magnetic moment}} {| class="wikitable" align="right" style="text-align:center" |+ The value of the Bohr magneton ! [[System of units]] !! Value !! Unit |- ! [[SI]]{{physconst|muB|ref=only}} | {{physconst|muB|unit=no|ref=no}} || [[Joule|J]]·[[tesla (unit)|T]]<sup>−1</sup> |- ! [[Gaussian units|Gaussian]]<ref name="O'Handley tati"> {{cite book |first=Robert C. |last=O'Handley |author-link=Robert O'Handley |year=2000 |title=Modern magnetic materials: principles and applications |url=https://archive.org/details/modernmagneticma00ohan |url-access=limited |page=[https://archive.org/details/modernmagneticma00ohan/page/n109 83] |publisher=[[John Wiley & Sons]] |isbn=0-471-15566-7 }} (value updated to correspond to CODATA 2018)</ref> | {{val|9.2740100783|(28)|e=-21}} || [[erg]]·[[Gauss (unit)|G]]<sup>−1</sup> |- ! eV/T<ref> {{cite web |title=CODATA value: Bohr magneton in eV/T |url=http://physics.nist.gov/cgi-bin/cuu/Value?mubev |work=The NIST Reference on Constants, Units, and Uncertainty |publisher=[[NIST]] |access-date=2022-08-28 }}</ref> | {{val|5.7883818060|(17)|e=-5}} || [[electronvolt|eV]]·[[tesla (unit)|T]]<sup>−1</sup> |- ! [[atomic units]] | {{sfrac|1|2}} || {{sfrac|''eħ''|''m''<sub>e</sub>}} |} In [[atomic physics]], the '''Bohr magneton''' (symbol {{math|''μ''<sub>B</sub>}}) is a [[physical constant]] and the natural unit for expressing the [[magnetic moment]] of an [[electron]] caused by its [[Angular momentum#Angular momentum in quantum mechanics|orbital]] or [[Spin (physics)|spin]] angular momentum.<ref> {{cite book |first=L. I. |last=Schiff |author-link=Leonard I. Schiff |year=1968 |title=Quantum Mechanics |page=440 |publisher=[[McGraw-Hill]] |url=https://archive.org/stream/QuantumMechanics_500/Schiff-QuantumMechanics#page/n455|edition=3rd |isbn=9780070856431 }}</ref><ref> {{cite book |first=R. |last=Shankar |author-link=Ramamurti Shankar |year=1980 |title=Principles of Quantum Mechanics |url=https://archive.org/details/principlesofquan0000shan |url-access=registration |pages=[https://archive.org/details/principlesofquan0000shan/page/398 398–400] |publisher=[[Plenum Press]] |isbn=0306403978 }}</ref> In [[SI units]], the Bohr magneton is defined as <math display="block">\mu_\mathrm{B} = \frac{e \hbar}{2 m_\mathrm{e}}</math> and in the [[Gaussian units|Gaussian CGS units]] as <math display="block">\mu_\mathrm{B} = \frac{e \hbar}{2 m_\mathrm{e} c} ,</math> where *{{mvar|e}} is the [[elementary charge]], *{{mvar|ħ}} is the [[Planck constant|reduced Planck constant]], *{{math|''m''<sub>e</sub>}} is the [[electron mass]], *{{math|''c''}} is the [[speed of light]]. ==History== The idea of elementary magnets is due to [[Walther Ritz]] (1907) and [[Pierre Weiss]]. Already before the [[Rutherford model]] of atomic structure, several theorists commented that the magneton should involve the [[Planck constant]] ''h''.<ref name="Keith">{{cite book |first1=Stephen T. |last1=Keith |first2=Pierre |last2=Quédec |year=1992 |chapter=Magnetism and Magnetic Materials: The Magneton |title=Out of the Crystal Maze |pages=384–394 |isbn=978-0-19-505329-6 }}</ref> By postulating that the ratio of electron [[kinetic energy]] to orbital [[frequency]] should be equal to ''h'', [[Richard Gans]] computed a value that was twice as large as the Bohr magneton in September 1911.<ref name="Heilbron">{{cite journal |first1=John |last1=Heilbron |first2=Thomas |last2=Kuhn |year=1969 |title=The genesis of the Bohr atom |journal=[[Historical Studies in the Physical Sciences|Hist. Stud. Phys. Sci.]] |volume=1 |pages=vi–290 |doi=10.2307/27757291 |jstor=27757291 |doi-access=free}}</ref> At the [[Solvay Conference#First Conference|First Solvay Conference]] in November that year, [[Paul Langevin]] obtained a value of <math>e\hbar/(2m_\mathrm{e})</math>.<ref> {{cite conference |first=Paul |last=Langevin |author-link=Paul Langevin |year=1911 |title=La théorie cinétique du magnétisme et les magnétons |trans-title=Kinetic theory of magnetism and magnetons |conference=La théorie du rayonnement et les quanta: Rapports et discussions de la réunion tenue à Bruxelles, du 30 octobre au 3 novembre 1911, sous les auspices de M. E. Solvay |conference-url=https://archive.org/details/lathoriedurayo00inst/page/404/mode/2up |page=404 }}</ref> Langevin assumed that the attractive force was inversely proportional to distance to the power <math>n+1,</math> and specifically <math>n=1.</math><ref>Note that the formula <math display="block">I_o=\frac m{Me}\frac h{8\pi}\frac n{n+2}</math> on page 404 should say <math display="block">I_o=\frac {Me}m\frac h{8\pi}\frac n{n+2}.</math></ref> The [[:Category:Romanian physicists|Romanian physicist]] [[Ștefan Procopiu]] had obtained the expression for the magnetic moment of the electron in 1913.<ref name = proc1>{{cite journal |first=Ștefan |last=Procopiu |year=1911–1913 |title=Sur les éléments d'énergie |trans-title=On the elements of energy |journal=[[Annales scientifiques de l'Université de Jassy]] |volume=7 |page=280 }}</ref><ref name = proc2>{{cite journal |first=Ștefan |last=Procopiu |year=1913 |title=Determining the Molecular Magnetic Moment by M. Planck's Quantum Theory |journal=[[Bulletin de la Section Scientifique de l'Académie Roumaine]] |volume=1 |pages=151 }}</ref> The value is sometimes referred to as the "Bohr–Procopiu magneton" in Romanian scientific literature.<ref>{{cite web |title=Ștefan Procopiu (1890–1972) |url=http://www.etti.tuiasi.ro/sibm/old/Technical%20Museum/html/en/Stefan_Procopiu_en.htm |publisher=Ștefan Procopiu Science and Technology Museum |access-date=2010-11-03 |archive-url=https://web.archive.org/web/20101118065825/http://www.etti.tuiasi.ro/sibm/old/Technical%20Museum/html/en/Stefan_Procopiu_en.htm |archive-date=2010-11-18 |url-status=dead }}</ref> The [[Weiss magneton]] was experimentally derived in 1911 as a unit of [[magnetic moment]] equal to {{val|1.53|e=-24}} [[joule]]s per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist [[Niels Bohr]] as a consequence of [[Bohr model|his atom model]].<ref name="Heilbron"/><ref> {{cite book |first=Abraham |last=Pais |year=1991 |title=Niels Bohr's Times, in physics, philosophy, and politics |publisher=[[Clarendon Press]] |isbn=0-19-852048-4 }}</ref> In 1920, [[Wolfgang Pauli]] gave the Bohr magneton its name in an article where he contrasted it with the magneton of the experimentalists which he called the [[Weiss magneton]].<ref name="Keith"/> ==Theory== A magnetic moment of an electron in an atom is composed of two components. First, the orbital motion of an electron around a nucleus generates a magnetic moment by [[Ampère's circuital law]]. Second, the inherent rotation, or spin, of the electron has a [[spin magnetic moment]]. In the [[Bohr model]] of the atom, for an electron that is in the orbit of lowest energy, its [[Angular momentum#Angular momentum in quantum mechanics|orbital angular momentum]] has magnitude equal to the [[reduced Planck constant]], denoted ''ħ''. The Bohr magneton is the magnitude of the magnetic dipole moment of an electron orbiting an atom with this angular momentum.<ref>{{cite book |first1=Marcelo |last1=Alonso |first2=Edward |last2=Finn |year=1992 |title=Physics |publisher=[[Addison-Wesley]] |isbn=978-0-201-56518-8 |url-access=registration |url=https://archive.org/details/physics00alon }}</ref> The spin angular momentum of an electron is {{sfrac|1|2}}''ħ'', but the intrinsic [[electron magnetic moment]] caused by its spin is also approximately one Bohr magneton, which results in the electron spin [[g-factor (physics)|''g''-factor]], a factor relating spin angular momentum to corresponding magnetic moment of a particle, having a value of approximately 2.<ref>{{cite book |first1=Anant S. |last1=Mahajan |first2=Abbas A. |last2=Rangwala |year=1989 |title=Electricity and Magnetism |url=https://books.google.com/books?id=_tXrjggX7WwC&q=%22intrinsic+dipole+moment%22+and+electron+%22Bohr+magneton%22&pg=PA419 |page=419 |publisher=[[McGraw-Hill]] |isbn=978-0-07-460225-6 }}</ref> ==See also== * [[Anomalous magnetic dipole moment|Anomalous magnetic moment]] * [[Electron magnetic moment]] * [[Bohr radius]] * [[Nuclear magneton]] * [[Parson magneton]] * [[Physical constant]] * [[Zeeman effect]] ==References== {{Reflist}} [[Category:Atomic physics]] [[Category:Niels Bohr]] [[Category:Physical constants]] [[Category:Quantum magnetism]] [[Category:Magnetic moment]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Physconst
(
edit
)
Template:Reflist
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)
Template:Val
(
edit
)
Search
Search
Editing
Bohr magneton
Add topic