Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Acoustic theory
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Theory of sound waves}} '''Acoustic theory''' is a scientific field that relates to the description of [[Sound#Waves|sound waves]]. It derives from [[fluid dynamics]]. See [[acoustics]] for the [[engineering]] approach. For sound waves of any magnitude of a disturbance in velocity, pressure, and density we have : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot \mathbf{v} + \nabla\cdot(\rho'\mathbf{v}) & = 0 \qquad \text{(Conservation of Mass)} \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0 \qquad \text{(Equation of Motion)} \end{align} </math> In the case that the fluctuations in velocity, density, and pressure are small, we can approximate these as : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot \mathbf{v} & = 0 \\ \frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho_0}\nabla p'& = 0 \end{align} </math> Where <math>\mathbf{v}(\mathbf{x},t)</math> is the perturbed velocity of the fluid, <math>p_0</math> is the pressure of the fluid at rest, <math>p'(\mathbf{x},t)</math> is the perturbed pressure of the system as a function of space and time, <math>\rho_0</math> is the density of the fluid at rest, and <math>\rho'(\mathbf{x}, t)</math> is the variance in the density of the fluid over space and time. In the case that the velocity is [[irrotational]] (<math>\nabla\times \mathbf{v} = 0</math>), we then have the acoustic wave equation that describes the system: :<math> \frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} - \nabla^2\phi = 0 </math> Where we have :<math> \begin{align} \mathbf{v} & = -\nabla \phi \\ c^2 & = (\frac{\partial p}{\partial \rho})_s\\ p' & = \rho_0\frac{\partial \phi}{\partial t}\\ \rho' & = \frac{\rho_0}{c^2}\frac{\partial \phi}{\partial t} \end{align} </math> ==Derivation for a medium at rest== Starting with the Continuity Equation and the Euler Equation: : <math> \begin{align} \frac{\partial \rho}{\partial t} +\nabla\cdot \rho\mathbf{v} & = 0 \\ \rho\frac{\partial \mathbf{v}}{\partial t} + \rho(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p & = 0 \end{align} </math> If we take small perturbations of a constant pressure and density: : <math> \begin{align} \rho & = \rho_0+\rho' \\ p & = p_0 + p' \end{align} </math> Then the equations of the system are : <math> \begin{align} \frac{\partial}{\partial t}(\rho_0+\rho') +\nabla\cdot (\rho_0+\rho')\mathbf{v} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla (p_0+p') & = 0 \end{align} </math> Noting that the equilibrium pressures and densities are constant, this simplifies to : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\nabla\cdot \rho'\mathbf{v} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0 \end{align} </math> ===A Moving Medium=== Starting with : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{w}+\nabla\cdot \rho'\mathbf{w} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{w}}{\partial t} + (\rho_0+\rho')(\mathbf{w}\cdot\nabla)\mathbf{w} + \nabla p' & = 0 \end{align} </math> We can have these equations work for a moving medium by setting <math>\mathbf{w} = \mathbf{u} + \mathbf{v}</math>, where <math>\mathbf{u}</math> is the constant velocity that the whole fluid is moving at before being disturbed (equivalent to a moving observer) and <math>\mathbf{v}</math> is the fluid velocity. In this case the equations look very similar: : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' + \nabla\cdot \rho'\mathbf{v} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{u}\cdot\nabla)\mathbf{v} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0 \end{align} </math> Note that setting <math>\mathbf{u} = 0</math> returns the equations at rest. ==Linearized Waves== Starting with the above given equations of motion for a medium at rest: : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\nabla\cdot \rho'\mathbf{v} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0 \end{align} </math> Let us now take <math>\mathbf{v},\rho',p'</math> to all be small quantities. In the case that we keep terms to first order, for the continuity equation, we have the <math>\rho'\mathbf{v}</math> term going to 0. This similarly applies for the density perturbation times the time derivative of the velocity. Moreover, the spatial components of the material derivative go to 0. We thus have, upon rearranging the equilibrium density: : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot \mathbf{v} & = 0 \\ \frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> Next, given that our sound wave occurs in an [[ideal fluid]], the motion is adiabatic, and then we can relate the small change in the pressure to the small change in the density by : <math> p' = \left(\frac{\partial p}{\partial \rho_{0}}\right)_{s}\rho' </math> Under this condition, we see that we now have : <math> \begin{align} \frac{\partial p'}{\partial t} +\rho_{0}\left(\frac{\partial p}{\partial \rho_0}\right)_{s}\nabla\cdot \mathbf{v} & = 0 \\ \frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> Defining the speed of sound of the system: : <math> c \equiv \sqrt{\left(\frac{\partial p}{\partial \rho_{0}}\right)_{s}} </math> Everything becomes : <math> \begin{align} \frac{\partial p'}{\partial t} +\rho_0c^2\nabla\cdot \mathbf{v} & = 0 \\ \frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> ===For Irrotational Fluids=== In the case that the fluid is irrotational, that is <math>\nabla\times\mathbf{v} = 0</math>, we can then write <math>\mathbf{v} = -\nabla\phi</math> and thus write our equations of motion as : <math> \begin{align} \frac{\partial p'}{\partial t} -\rho_0c^2\nabla^2\phi & = 0 \\ -\nabla\frac{\partial\phi}{\partial t} + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> The second equation tells us that : <math> p' = \rho_0 \frac{\partial \phi}{\partial t} </math> And the use of this equation in the continuity equation tells us that : <math> \rho_0\frac{\partial^2 \phi}{\partial t} -\rho_0c^2\nabla^2\phi = 0 </math> This simplifies to : <math> \frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} -\nabla^2\phi = 0 </math> Thus the velocity potential <math>\phi</math> obeys the wave equation in the limit of small disturbances. The boundary conditions required to solve for the potential come from the fact that the velocity of the fluid must be 0 normal to the fixed surfaces of the system. Taking the time derivative of this wave equation and multiplying all sides by the unperturbed density, and then using the fact that <math>p' = \rho_0 \frac{\partial \phi}{\partial t}</math> tells us that : <math> \frac{1}{c^2}\frac{\partial^2 p'}{\partial t^2} -\nabla^2p' = 0 </math> Similarly, we saw that <math>p' = \left(\frac{\partial p}{\partial \rho_{0}}\right)_{s}\rho' = c^{2}\rho'</math>. Thus we can multiply the above equation appropriately and see that : <math> \frac{1}{c^2}\frac{\partial^2 \rho'}{\partial t^2} -\nabla^2\rho' = 0 </math> Thus, the velocity potential, pressure, and density all obey the wave equation. Moreover, we only need to solve one such equation to determine all other three. In particular, we have : <math> \begin{align} \mathbf{v} & = -\nabla \phi \\ p' & = \rho_0 \frac{\partial \phi}{\partial t}\\ \rho' & = \frac{\rho_0}{c^2}\frac{\partial\phi}{\partial t} \end{align} </math> ===For a moving medium=== Again, we can derive the small-disturbance limit for sound waves in a moving medium. Again, starting with : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' + \nabla\cdot \rho'\mathbf{v} & = 0 \\ (\rho_0+\rho')\frac{\partial \mathbf{v}}{\partial t} + (\rho_0+\rho')(\mathbf{u}\cdot\nabla)\mathbf{v} + (\rho_0+\rho')(\mathbf{v}\cdot\nabla)\mathbf{v} + \nabla p' & = 0 \end{align} </math> We can linearize these into : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' & = 0 \\ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{v} + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> ====For Irrotational Fluids in a Moving Medium==== Given that we saw that : <math> \begin{align} \frac{\partial \rho'}{\partial t} +\rho_0\nabla\cdot\mathbf{v}+\mathbf{u}\cdot\nabla\rho' & = 0 \\ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{u}\cdot\nabla)\mathbf{v} + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> If we make the previous assumptions of the fluid being ideal and the velocity being irrotational, then we have : <math> \begin{align} p' & = \left(\frac{\partial p}{\partial \rho_{0}}\right)_{s}\rho' = c^{2}\rho' \\ \mathbf{v} & = -\nabla\phi \end{align} </math> Under these assumptions, our linearized sound equations become : <math> \begin{align} \frac{1}{c^2}\frac{\partial p'}{\partial t} -\rho_0\nabla^2\phi+\frac{1}{c^2}\mathbf{u}\cdot\nabla p' & = 0 \\ -\frac{\partial}{\partial t}(\nabla\phi) - (\mathbf{u}\cdot\nabla)[\nabla\phi] + \frac{1}{\rho_0}\nabla p' & = 0 \end{align} </math> Importantly, since <math>\mathbf{u}</math> is a constant, we have <math>(\mathbf{u}\cdot\nabla)[\nabla\phi] = \nabla[(\mathbf{u}\cdot\nabla)\phi]</math>, and then the second equation tells us that : <math> \frac{1}{\rho_0} \nabla p' = \nabla\left[\frac{\partial\phi}{\partial t} + (\mathbf{u}\cdot\nabla)\phi\right] </math> Or just that : <math> p' = \rho_{0}\left[\frac{\partial\phi}{\partial t} + (\mathbf{u}\cdot\nabla)\phi\right] </math> Now, when we use this relation with the fact that <math>\frac{1}{c^2}\frac{\partial p'}{\partial t} -\rho_0\nabla^2\phi+\frac{1}{c^2}\mathbf{u}\cdot\nabla p' = 0</math>, alongside cancelling and rearranging terms, we arrive at : <math> \frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} - \nabla^2\phi + \frac{1}{c^2}\frac{\partial}{\partial t}[(\mathbf{u}\cdot\nabla)\phi] + \frac{1}{c^2}\frac{\partial}{\partial t}(\mathbf{u}\cdot\nabla\phi) + \frac{1}{c^2}\mathbf{u}\cdot\nabla[(\mathbf{u}\cdot\nabla)\phi] = 0 </math> We can write this in a familiar form as :<math> \left[\frac{1}{c^2}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)^{2} - \nabla^{2}\right]\phi = 0 </math> This differential equation must be solved with the appropriate boundary conditions. Note that setting <math>\mathbf{u}=0</math> returns us the wave equation. Regardless, upon solving this equation for a moving medium, we then have :<math> \begin{align} \mathbf{v} & = -\nabla \phi \\ p' & = \rho_{0}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)\phi\\ \rho' & = \frac{\rho_{0}}{c^{2}}\left(\frac{\partial}{\partial t} + \mathbf{u}\cdot\nabla\right)\phi \end{align} </math> ==See also== * [[Acoustic attenuation]] * [[Sound]] * [[Fourier analysis]] ==References== * {{cite book |title= Fluid Mechanics |first1= L.D. |last1= Landau |first2= E.M. |last2= Lifshitz |isbn= 0-7506-2767-0 |edition= 2nd |date= 1984 |publisher= Butterworth-Heinenann }} * {{cite book |title= Fluid Mechanics |first1= Alexander |last1= Fetter |first2= John |last2= Walecka |isbn= 0-486-43261-0 |edition= 1st |date= 2003 |publisher= Courier Corporation }} {{DEFAULTSORT:Acoustic Theory}} [[Category:Fluid dynamics]] [[Category:Acoustics]] [[Category:Sound]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Cite book
(
edit
)
Template:Short description
(
edit
)
Search
Search
Editing
Acoustic theory
Add topic