Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Z-transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Example:<ref>{{Cite book |last1=Proakis |first1=John |title=Digital Signal Processing Principles, Algorithms and Applications |last2=Manolakis |first2=Dimitris |publisher=PRENTICE-HALL INTERNATIONAL, INC. |edition=3rd}}</ref> ==== A) Determine the inverse Z-transform of the following by series expansion method, <math display=block>X(z) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}}</math> Solution: Case 1: ROC: <math>\left\vert Z \right\vert > 1</math> Since the ROC is the exterior of a circle, <math>x(n)</math> is causal (signal existing for nβ₯0). <math display=block>X(z) = {1\over 1 - {3\over 2}z^{-1} + {1\over 2}z^{-2}} = 1 + {{3\over 2}z^{-1}} + {{7\over 4}z^{-2}} + {{15\over 8}z^{-3}} + {{31\over 16}z^{-4}} +....</math> thus, <math display=block>\begin{align} x(n) &= \left\{1 , \frac{3}{2} , \frac{7}{4} , \frac{15}{8} , \frac{31}{16} \ldots \right\} \\ & \qquad\! \uparrow \\ \end{align}</math> (arrow indicates term at x(0)=1) Note that in each step of long division process we eliminate lowest power term of <math>z^{-1}</math>. Case 2: ROC: <math>\left\vert Z \right\vert < 0.5</math> Since the ROC is the interior of a circle, <math>x(n)</math> is anticausal (signal existing for n<0). By performing long division we get, <math display=block>X(z) = \frac{1}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2} } = 2z^2 + 6z^3 +14z^4 + 30z^5 + \ldots</math> <math>\begin{align} x(n) & = \{30, 14, 6, 2, 0, 0\} \\ & \qquad \qquad \qquad \quad\ \ \, \uparrow\\ \end{align}</math> (arrow indicates term at x(0)=0) Note that in each step of long division process we eliminate lowest power term of <math>z</math>. ''Note:'' # ''When the signal is causal, we get positive powers of <math>z</math> and when the signal is anticausal, we get negative powers of <math>z</math>.'' # ''<math>z^k</math> indicates term at <math>x(-k)</math> and <math>z^{-k}</math> indicates term at <math>x(k)</math>.'' B) Determine the inverse Z-transform of the following by series expansion method, Eliminating negative powers if <math>z</math> and dividing by <math>z</math>, <math display=block>\frac{X(z)}{z} = \frac{z^2}{z(z^2 - 1.5z + 0.5)} = \frac{z}{z^2 - 1.5z + 0.5} </math> By Partial Fraction Expansion, <math display=block>\begin{align} \frac{X(z)}{z} &= \frac{z}{(z-1)(z-0.5)} = \frac{A_1}{z-0.5} + \frac{A_2}{z-1} \\[4pt] & A_1 = \left. \frac{(z-0.5) X(z)}{z} \right\vert_{z=0.5} = \frac{0.5}{(0.5-1)} = -1 \\[4pt] & A_2 = \left. \frac{(z-1) X(z)}{z} \right\vert_{z=1} = \frac{1}{1-0.5} = {2} \\[4pt] \frac{X(z)}{z} &= \frac{2}{z-1} - \frac{1}{z-0.5} \end{align}</math> Case 1: ROC:<math>\left\vert Z \right\vert > 1 </math> Both the terms are causal, hence <math>x(n)</math> is causal. <math display=block>\begin{align} x(n) &= 2{(1)^n}u(n) - 1{(0.5)^n}u(n) \\ &= (2-0.5^n) u(n) \\ \end{align}</math> Case 2: ROC:<math>\left\vert Z \right\vert < 0.5 </math> Both the terms are anticausal, hence <math>x(n)</math> is anticausal. <math>\begin{align} x(n) &= -2{(1)^n}u(-n-1) - (-1{(0.5)^n}u(-n-1) ) \\ &= (0.5^n-2) u(-n-1) \\ \end{align}</math> Case 3: ROC:<math>0.5 < \left\vert Z \right\vert < 1</math> One of the terms is causal (p=0.5 provides the causal part) and other is anticausal (p=1 provides the anticausal part), hence <math>x(n)</math> is both sided. <math>\begin{align} x(n) &= -2{(1)^n}u(-n-1) - 1{(0.5)^n}u(n) \\ &= -2u(-n-1) - 0.5^n u(n) \\ \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Z-transform
(section)
Add topic