Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Universal quantification
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== As adjoint == In [[category theory]] and the theory of [[elementary topos|elementary topoi]], the universal quantifier can be understood as the [[right adjoint]] of a [[functor]] between [[power set]]s, the [[inverse image]] functor of a function between sets; likewise, the [[existential quantifier]] is the [[left adjoint]].<ref>[[Saunders Mac Lane]], Ieke Moerdijk, (1992) ''Sheaves in Geometry and Logic'' Springer-Verlag. {{isbn|0-387-97710-4}} ''See page 58''</ref> For a set <math>X</math>, let <math>\mathcal{P}X</math> denote its [[powerset]]. For any function <math>f:X\to Y</math> between sets <math>X</math> and <math>Y</math>, there is an [[inverse image]] functor <math>f^*:\mathcal{P}Y\to \mathcal{P}X</math> between powersets, that takes subsets of the codomain of ''f'' back to subsets of its domain. The left adjoint of this functor is the existential quantifier <math>\exists_f</math> and the right adjoint is the universal quantifier <math>\forall_f</math>. That is, <math>\exists_f\colon \mathcal{P}X\to \mathcal{P}Y</math> is a functor that, for each subset <math>S \subset X</math>, gives the subset <math>\exists_f S \subset Y</math> given by :<math>\exists_f S =\{ y\in Y \;|\; \exists x\in X.\ f(x)=y \quad\land\quad x\in S \},</math> those <math>y</math> in the image of <math>S</math> under <math>f</math>. Similarly, the universal quantifier <math>\forall_f\colon \mathcal{P}X\to \mathcal{P}Y</math> is a functor that, for each subset <math>S \subset X</math>, gives the subset <math>\forall_f S \subset Y</math> given by :<math>\forall_f S =\{ y\in Y \;|\; \forall x\in X.\ f(x)=y \quad\implies\quad x\in S \},</math> those <math>y</math> whose preimage under <math>f</math> is contained in <math>S</math>. The more familiar form of the quantifiers as used in [[first-order logic]] is obtained by taking the function ''f'' to be the unique function <math>!:X \to 1</math> so that <math>\mathcal{P}(1) = \{T,F\}</math> is the two-element set holding the values true and false, a subset ''S'' is that subset for which the [[predicate (mathematical logic)|predicate]] <math>S(x)</math> holds, and :<math>\begin{array}{rl}\mathcal{P}(!)\colon \mathcal{P}(1) & \to \mathcal{P}(X)\\ T &\mapsto X \\ F &\mapsto \{\}\end{array}</math> :<math>\exists_! S = \exists x. S(x),</math> which is true if <math>S</math> is not empty, and :<math>\forall_! S = \forall x. S(x),</math> which is false if S is not X. The universal and existential quantifiers given above generalize to the [[presheaf category]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Universal quantification
(section)
Add topic