Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Total order
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Completeness===<!-- This section is linked from [[Completely distributive lattice]]. See [[WP:MOS#Section management]] --> A totally ordered set is said to be '''[[Completeness (order theory)|complete]]''' if every nonempty subset that has an [[upper bound]], has a [[least upper bound]]. For example, the set of [[real number]]s '''R''' is complete but the set of [[rational number]]s '''Q''' is not. In other words, the various concepts of [[Completeness (order theory)|completeness]] (not to be confused with being "total") do not carry over to [[Binary relation|restrictions]]. For example, over the [[real number]]s a property of the relation {{char|β€}} is that every [[Empty set|non-empty]] subset ''S'' of '''R''' with an [[upper bound]] in '''R''' has a [[Supremum|least upper bound]] (also called supremum) in '''R'''. However, for the rational numbers this supremum is not necessarily rational, so the same property does not hold on the restriction of the relation {{char|β€}} to the rational numbers. There are a number of results relating properties of the order topology to the completeness of X: * If the order topology on ''X'' is connected, ''X'' is complete. * ''X'' is connected under the order topology if and only if it is complete and there is no ''gap'' in ''X'' (a gap is two points ''a'' and ''b'' in ''X'' with ''a'' < ''b'' such that no ''c'' satisfies ''a'' < ''c'' < ''b''.) * ''X'' is complete if and only if every bounded set that is closed in the order topology is compact. A totally ordered set (with its order topology) which is a [[complete lattice]] is [[Compact space|compact]]. Examples are the closed intervals of real numbers, e.g. the [[unit interval]] [0,1], and the [[affinely extended real number system]] (extended real number line). There are order-preserving [[homeomorphism]]s between these examples.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Total order
(section)
Add topic