Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Symplectic matrix
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Diagonalization and decomposition== {{bullet list |For any [[Positive-definite matrix|positive definite]] symmetric <math>2n\times 2n</math> real symplectic matrix <math>S</math>, there is a symplectic unitary <math>U</math>, <math display="block">U \in \mathrm{U}(2n,\mathbb{R}) \cap \operatorname{Sp}(2n,\mathbb{R}) = \mathrm{O}(2n) \cap \operatorname{Sp}(2n,\mathbb{R}), </math>such that<math display="block">S = U^\text{T} D U \quad \text{for} \quad D = \operatorname{diag}(\lambda_1,\ldots,\lambda_n,\lambda_1^{-1},\ldots,\lambda_n^{-1}),</math>where the diagonal elements of <math>D</math> are the [[Eigenvalues and eigenvectors|eigenvalues]] of <math>S</math>.<ref name=":0">{{Cite book|title=Symplectic Methods in Harmonic Analysis and in Mathematical Physics - Springer|last=de Gosson|first=Maurice A.|language=en|doi=10.1007/978-3-7643-9992-4|year = 2011|isbn = 978-3-7643-9991-7}}</ref><ref>{{cite arXiv|first1=Martin|last1=Houde|first2=Will|last2=McCutcheon|first3=Nicolas|last3=Quesada|title=Matrix decompositions in quantum optics: Takagi/Autonne, Bloch–Messiah/Euler, Iwasawa, and Williamson|at= Sec. V, p. 5 |date=13 March 2024|eprint=2403.04596}}</ref> |Any real symplectic matrix {{math|S}} has a [[polar decomposition]] of the form:<ref name=":0" /><math display="block">S = UR,</math>where<math display="block">U \in \operatorname{Sp}(2n,\mathbb{R})\cap\operatorname{U}(2n,\mathbb{R}),</math> and<math display="block">R \in \operatorname{Sp}(2n,\mathbb{R})\cap\operatorname{Sym}_+(2n,\mathbb{R}).</math> |Any real symplectic matrix can be decomposed as a product of three matrices:<math display="block">S = O\begin{pmatrix}D & 0 \\ 0 & D^{-1}\end{pmatrix}O',</math>where <math>O</math> and <math>O'</math> are both symplectic and [[Orthogonal matrix|orthogonal]], and <math>D</math> is [[Positive-definite matrix|positive-definite]] and [[Diagonal matrix|diagonal]].<ref>{{cite arXiv|first1=Alessandro|last1=Ferraro|first2=Stefano|last2=Olivares|first3=Matteo G. A.|last3=Paris|title=Gaussian states in continuous variable quantum information|at= Sec. 1.3, p. 4 |date=31 March 2005|eprint=quant-ph/0503237}}</ref> This decomposition is closely related to the [[singular value decomposition]] of a matrix and is known as an 'Euler' or 'Bloch-Messiah' decomposition. | The set of orthogonal symplectic matrices forms a (maximal) compact subgroup of the symplectic group.<ref name=":4">{{ cite book|title= Quantum Continuous Variables |last=Serafini|first=Alessio|language=en|doi=10.1201/9781003250975|year = 2023|isbn = 9781003250975}}</ref> This set is isomorphic to the set of unitary matrices of dimension <math> n </math>, <math>\mathrm{U}(2n,\mathbb{R}) \cap \operatorname{Sp}(2n,\mathbb{R}) = \mathrm{O}(2n) \cap \operatorname{Sp}(2n,\mathbb{R}) \cong \mathrm{U}(n,\mathbb{C})</math>. Every symplectic orthogonal matrix can be written as {{NumBlk||<math display="block"> \begin{pmatrix} \Re(V) & -\Im(V) \\ \Im(V) & \Re(V) \end{pmatrix} = \left[\frac{1}{\sqrt{2}}\begin{pmatrix} I_n & i I_n \\ I_n & -i I_n \end{pmatrix} \right]^\dagger \begin{pmatrix} V & 0 \\ 0 & V^* \end{pmatrix} \left[\frac{1}{\sqrt{2}}\begin{pmatrix} I_n & i I_n \\ I_n & -i I_n \end{pmatrix} \right], </math><br/>|{{EquationRef|2}}}} with <math> V \in \mathrm{U}(n,\mathbb{C})</math>. This equation implies that every symplectic orthogonal matrix has determinant equal to +1 and thus that this is true for all symplectic matrices as its polar decomposition is itself given in terms symplectic matrices. }}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Symplectic matrix
(section)
Add topic