Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Student's t-distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Derivation===== Suppose ''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub> are [[statistical independence|independent]] realizations of the normally-distributed, random variable ''X'', which has an expected value ''ฮผ'' and [[variance]] ''ฯ''<sup>2</sup>. Let :<math>\overline{X}_n = \frac{1}{n}(X_1+\cdots+X_n)</math> be the sample mean, and :<math>s^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}_n\right)^2</math> be an unbiased estimate of the variance from the sample. It can be shown that the random variable : <math>V = (n-1)\frac{s^2}{\sigma^2} </math> has a chi-squared distribution with <math>\nu = n - 1</math> degrees of freedom (by [[Cochran's theorem]]).<ref>{{cite journal|authorlink1=William Gemmell Cochran | last1=Cochran |first1=W. G.|date=1934|title=The distribution of quadratic forms in a normal system, with applications to the analysis of covariance|journal=[[Mathematical Proceedings of the Cambridge Philosophical Society]]|volume=30|issue=2|pages=178โ191|bibcode=1934PCPS...30..178C|doi=10.1017/S0305004100016595|s2cid=122547084 }}</ref> It is readily shown that the quantity :<math>Z = \left(\overline{X}_n - \mu\right) \frac{\sqrt{n}}{\sigma}</math> is normally distributed with mean 0 and variance 1, since the sample mean <math>\overline{X}_n</math> is normally distributed with mean ''ฮผ'' and variance ''ฯ''<sup>2</sup>/''n''. Moreover, it is possible to show that these two random variables (the normally distributed one ''Z'' and the chi-squared-distributed one ''V'') are independent. Consequently{{clarify|date=November 2012}} the [[pivotal quantity]] :<math display="inline">T \equiv \frac{Z}{\sqrt{V/\nu}} = \left(\overline{X}_n - \mu\right) \frac{\sqrt{n}}{s},</math> which differs from ''Z'' in that the exact standard deviation ''ฯ'' is replaced by the sample standard error ''s'', has a Student's ''t''-distribution as defined above. Notice that the unknown population variance ''ฯ''<sup>2</sup> does not appear in ''T'', since it was in both the numerator and the denominator, so it canceled. Gosset intuitively obtained the probability density function stated above, with <math>\nu</math> equal to ''n'' โ 1, and Fisher proved it in 1925.<ref name="Fisher 1925 90โ104"/> The distribution of the test statistic ''T'' depends on <math>\nu</math>, but not ''ฮผ'' or ''ฯ''; the lack of dependence on ''ฮผ'' and ''ฯ'' is what makes the ''t''-distribution important in both theory and practice.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Student's t-distribution
(section)
Add topic