Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Solid angle
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Solid angles in arbitrary dimensions == The solid angle subtended by the complete ({{mvar|d β 1}})-dimensional spherical surface of the unit sphere in [[Euclidean space|{{math|''d''}}-dimensional Euclidean space]] can be defined in any number of dimensions {{math|''d''}}. One often needs this solid angle factor in calculations with spherical symmetry. It is given by the formula <math display="block">\Omega_{d} = \frac{2\pi^\frac{d}{2}}{\Gamma\left(\frac{d}{2}\right)}, </math> where {{math|Ξ}} is the [[gamma function]]. When {{math|''d''}} is an integer, the gamma function can be computed explicitly.<ref>{{cite journal| last = Jackson| first = FM| year = 1993| title = Polytopes in Euclidean n-space| journal = Bulletin of the Institute of Mathematics and Its Applications| volume = 29| issue = 11/12| pages = 172β174| url = https://www.researchgate.net/publication/265585180}}</ref> It follows that <math display="block"> \Omega_{d} = \begin{cases} \frac{1}{ \left(\frac{d}{2} - 1 \right)!} 2\pi^\frac{d}{2}\ & d\text{ even} \\ \frac{\left(\frac{1}{2}\left(d - 1\right)\right)!}{(d - 1)!} 2^d \pi^{\frac{1}{2}(d - 1)}\ & d\text{ odd}. \end{cases} </math> This gives the expected results of 4{{pi}} steradians for the 3D sphere bounded by a surface of area {{math|4Ο''r''<sup>2</sup>}} and 2{{pi}} radians for the 2D circle bounded by a circumference of length {{math|2Ο''r''}}. It also gives the slightly less obvious 2 for the 1D case, in which the origin-centered 1D "sphere" is the interval {{closed-closed|β''r'', ''r''}} and this is bounded by two limiting points. The counterpart to the vector formula in arbitrary dimension was derived by Aomoto<ref>{{cite journal|first=Kazuhiko| last=Aomoto| title=Analytic structure of SchlΓ€fli function| journal=Nagoya Math. J.| volume=68| year=1977| pages=1β16| doi=10.1017/s0027763000017839| doi-access=free}}</ref><ref>{{cite journal| last1=Beck|first1=M.|last2=Robins|first2=S.|last3=Sam|first3=S. V. |year=2010 |title=Positivity theorems for solid-angle polynomials |journal=Contributions to Algebra and Geometry |volume=51|issue=2| pages=493β507 |arxiv=0906.4031 |bibcode=2009arXiv0906.4031B}}</ref> and independently by Ribando.<ref>{{cite journal| journal=Discrete & Computational Geometry| volume=36| issue=3| pages=479β487| year=2006| title= Measuring Solid Angles Beyond Dimension Three| first=Jason M.| last=Ribando| doi=10.1007/s00454-006-1253-4| doi-access=free}}</ref> It expresses them as an infinite multivariate [[Taylor series]]: <math display="block">\Omega = \Omega_d \frac{\left|\det(V)\right|}{(4\pi)^{d/2}} \sum_{\vec a\in \N_0^{\binom {d}{2}}} \left [ \frac{(-2)^{\sum_{i<j} a_{ij}}}{\prod_{i<j} a_{ij}!}\prod_i \Gamma \left (\frac{1+\sum_{m\neq i} a_{im}}{2} \right ) \right ] \vec \alpha^{\vec a}. </math> Given {{mvar|d}} unit vectors <math>\vec{v}_i</math> defining the angle, let {{mvar|V}} denote the matrix formed by combining them so the {{mvar|i}}th column is <math>\vec{v}_i</math>, and <math>\alpha_{ij} = \vec{v}_i\cdot\vec{v}_j = \alpha_{ji}, \alpha_{ii}=1</math>. The variables <math>\alpha_{ij},1 \le i < j \le d</math> form a multivariable <math>\vec \alpha = (\alpha_{12},\dotsc , \alpha_{1d}, \alpha_{23}, \dotsc, \alpha_{d-1,d}) \in \R^{\binom{d}{2}}</math>. For a "congruent" integer multiexponent <math>\vec a=(a_{12}, \dotsc, a_{1d}, a_{23}, \dotsc , a_{d-1,d}) \in \N_0^{\binom{d}{2}}, </math> define <math display="inline">\vec \alpha^{\vec a}=\prod \alpha_{ij}^{a_{ij}}</math>. Note that here <math>\N_0</math> = non-negative integers, or natural numbers beginning with 0. The notation <math>\alpha_{ji}</math> for <math>j > i</math> means the variable <math>\alpha_{ij}</math>, similarly for the exponents <math>a_{ji}</math>. Hence, the term <math display="inline">\sum_{m \ne l} a_{lm}</math> means the sum over all terms in <math>\vec a</math> in which l appears as either the first or second index. Where this series converges, it converges to the solid angle defined by the vectors.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Solid angle
(section)
Add topic