Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Simple continued fraction
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Some useful theorems=== If <math>\ a_0\ ,</math> <math>a_1\ ,</math> <math>a_2\ ,</math> <math>\ \ldots\ </math> is an infinite sequence of positive integers, define the sequences <math>\ h_n\ </math> and <math>\ k_n\ </math> recursively: {| border="0" cellpadding="5" cellspacing="10" align="none" |- |<math> h_{n} = a_n\ h_{n-1} + h_{n-2}\ ,</math> | | |<math> h_{-1} = 1\ ,</math> | |<math> h_{-2} = 0\ ;</math> |- |<math> k_{n}= a_n\ k_{n-1} + k_{n-2}\ ,</math> | | |<math> k_{-1} = 0\ ,</math> | |<math> k_{-2} = 1 ~.</math> |} <blockquote>'''Theorem 1.''' For any positive real number <math>\ x\ </math> :<math> \left[\ a_0;\ a_1,\ \dots, a_{n-1}, x\ \right]=\frac{x\ h_{n-1} + h_{n-2}}{\ x\ k_{n-1} + k_{n-2}\ }, \quad \left[\ a_0;\ a_1,\ \dots, a_{n-1} + x\ \right]=\frac{h_{n-1} + xh_{n-2}}{\ k_{n-1} + x k_{n-2}\ }</math> </blockquote> <blockquote>'''Theorem 2.''' The convergents of <math>\ [\ a_0\ ;</math> <math>a_1\ ,</math> <math>a_2\ ,</math> <math>\ldots\ ]\ </math> are given by :<math>\left[\ a_0;\ a_1,\ \dots, a_n\ \right] = \frac{h_n}{\ k_n\ } ~.</math> or in matrix form,<math display="block">\begin{bmatrix} h_n & h_{n-1} \\ k_n & k_{n-1} \end{bmatrix} = \begin{bmatrix} a_0 & 1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} a_n & 1 \\ 1 & 0 \end{bmatrix}</math> '''Theorem 3.''' If the <math>\ n</math>th convergent to a continued fraction is <math>\ \frac{ h_n}{ k_n }\ ,</math> then :<math> k_n\ h_{n-1} - k_{n-1}\ h_n = (-1)^n\ ,</math> or equivalently :<math> \frac{ h_n }{\ k_n\ } - \frac{ h_{n-1} }{\ k_{n-1}\ } = \frac{ (-1)^{n+1} }{\ k_{n-1}\ k_n\ } ~.</math> </blockquote> '''Corollary 1:''' Each convergent is in its lowest terms (for if <math>\ h_n\ </math> and <math>\ k_n\ </math> had a nontrivial common divisor it would divide <math>\ k_n\ h_{n-1} - k_{n-1}\ h_n\ ,</math> which is impossible). '''Corollary 2:''' The difference between successive convergents is a fraction whose numerator is unity: :<math> \frac{h_n}{k_n} - \frac{ h_{n-1} }{ k_{n-1} } = \frac{\ h_n\ k_{n-1} - k_n\ h_{n-1}\ }{\ k_n\ k_{n-1}\ } = \frac{ (-1)^{n+1} }{\ k_n\ k_{n-1}\ } ~.</math> '''Corollary 3:''' The continued fraction is equivalent to a series of alternating terms: :<math>a_0 + \sum_{n=0}^\infty \frac{ (-1)^n }{\ k_{n}\ k_{n+1}\ } ~.</math> '''Corollary 4:''' The matrix :<math>\begin{bmatrix} h_n & h_{n-1} \\ k_n & k_{n-1} \end{bmatrix} = \begin{bmatrix} a_0 & 1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} a_n & 1 \\ 1 & 0 \end{bmatrix}</math> has [[determinant]] <math>(-1)^{n+1}</math>, and thus belongs to the group of <math>\ 2\times 2\ </math> [[unimodular matrix|unimodular matrices]] <math>\ \mathrm{GL}(2,\mathbb{Z}) ~.</math> '''Corollary 5:''' The matrix<math display="block">\begin{bmatrix} h_n & h_{n-2} \\ k_n & k_{n-2} \end{bmatrix} = \begin{bmatrix} h_{n-1} & h_{n-2} \\ k_{n-1} & k_{n-2} \end{bmatrix} \begin{bmatrix} a_{n} & 0 \\ 1 & 1 \end{bmatrix}</math> has determinant <math>(-1)^na_n</math>, or equivalently,<math display="block"> \frac{ h_n }{\ k_n\ } - \frac{ h_{n-2} }{\ k_{n-2}\ } = \frac{ (-1)^{n} }{\ k_{n-2 }\ k_n\ }a_n</math>meaning that the odd terms monotonically decrease, while the even terms monotonically increase. '''Corollary 6:''' The denominator sequence <math>k_0, k_1, k_2, \dots</math> satisfies the recurrence relation <math>k_{-1} = 0, k_0 = 1, k_n = k_{n-1}a_n + k_{n-2}</math>, and grows at least as fast as the [[Fibonacci sequence]], which itself grows like <math>O(\phi^n)</math> where <math>\phi= 1.618\dots</math> is the [[golden ratio]]. <blockquote>'''Theorem 4.''' Each (<math>\ s</math>th) convergent is nearer to a subsequent (<math>\ n</math>th) convergent than any preceding (<math>\ r</math>th) convergent is. In symbols, if the <math>\ n</math>th convergent is taken to be <math>\ \left[\ a_0;\ a_1,\ \ldots,\ a_n\ \right] = x_n\ ,</math> then :<math> \left|\ x_r - x_n\ \right| > \left|\ x_s - x_n\ \right| </math> for all <math>\ r < s < n ~.</math> </blockquote> '''Corollary 1:''' The even convergents (before the <math>\ n</math>th) continually increase, but are always less than <math>\ x_n ~.</math> '''Corollary 2:''' The odd convergents (before the <math>\ n</math>th) continually decrease, but are always greater than <math>\ x_n ~.</math> <blockquote>'''Theorem 5.''' :<math>\frac{1}{\ k_n\ (k_{n+1} + k_n)\ } < \left|\ x - \frac{ h_n }{\ k_n\ }\ \right| < \frac{1}{\ k_n\ k_{n+1}\ } ~.</math> </blockquote> '''Corollary 1:''' A convergent is nearer to the limit of the continued fraction than any fraction whose denominator is less than that of the convergent. '''Corollary 2:''' A convergent obtained by terminating the continued fraction just before a large term is a close approximation to the limit of the continued fraction.<blockquote>'''Theorem 6:''' Consider the set of all open intervals with end-points <math>[0;a_1, \dots, a_n], [0;a_1, \dots, a_n+1]</math>. Denote it as <math>\mathcal C</math>. Any open subset of <math>[0, 1] \setminus \Q</math> is a disjoint union of sets from <math>\mathcal C</math>.</blockquote>'''Corollary:''' The infinite continued fraction provides a homeomorphism from the Baire space to <math>[0, 1] \setminus \Q</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Simple continued fraction
(section)
Add topic