Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riesz representation theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Example in finite dimensions using matrix transformations ==== Consider the special case of <math>H = \Complex^n</math> (where <math>n > 0</math> is an integer) with the standard inner product <math display=block>\langle z \mid w \rangle := \overline{\,\vec{z}\,\,}^{\operatorname{T}} \vec{w} \qquad \text{ for all } \; w, z \in H</math> where <math>w \text{ and } z</math> are represented as [[Column matrix|column matrices]] <math>\vec{w} := \begin{bmatrix}w_1 \\ \vdots \\ w_n\end{bmatrix}</math> and <math>\vec{z} := \begin{bmatrix}z_1 \\ \vdots \\ z_n\end{bmatrix}</math> with respect to the standard orthonormal basis <math>e_1, \ldots, e_n</math> on <math>H</math> (here, <math>e_i</math> is <math>1</math> at its <math>i</math><sup>th</sup> coordinate and <math>0</math> everywhere else; as usual, <math>H^*</math> will now be associated with the [[dual basis]]) and where <math>\overline{\,\vec{z}\,}^{\operatorname{T}} := \left[\overline{z_1}, \ldots, \overline{z_n}\right]</math> denotes the [[conjugate transpose]] of <math>\vec{z}.</math> Let <math>\varphi \in H^*</math> be any linear functional and let <math>\varphi_1, \ldots, \varphi_n \in \Complex</math> be the unique scalars such that <math display=block>\varphi\left(w_1, \ldots, w_n\right) = \varphi_1 w_1 + \cdots + \varphi_n w_n \qquad \text{ for all } \; w := \left(w_1, \ldots, w_n\right) \in H,</math> where it can be shown that <math>\varphi_i = \varphi\left(e_i\right)</math> for all <math>i = 1, \ldots, n.</math> Then the Riesz representation of <math>\varphi</math> is the vector <math display=block>f_{\varphi} ~:=~ \overline{\varphi_1} e_1 + \cdots + \overline{\varphi_n} e_n ~=~ \left(\overline{\varphi_1}, \ldots, \overline{\varphi_n}\right) \in H.</math> To see why, identify every vector <math>w = \left(w_1, \ldots, w_n\right)</math> in <math>H</math> with the column matrix <math>\vec{w} := \begin{bmatrix}w_1 \\ \vdots \\ w_n\end{bmatrix}</math> so that <math>f_{\varphi}</math> is identified with <math>\vec{f_{\varphi}} := \begin{bmatrix}\overline{\varphi_1} \\ \vdots \\ \overline{\varphi_n}\end{bmatrix} = \begin{bmatrix}\overline{\varphi\left(e_1\right)} \\ \vdots \\ \overline{\varphi\left(e_n\right)}\end{bmatrix}.</math> As usual, also identify the linear functional <math>\varphi</math> with its [[transformation matrix]], which is the [[row matrix]] <math>\vec{\varphi} := \left[\varphi_1, \ldots, \varphi_n\right]</math> so that <math>\vec{f_{\varphi}} := \overline{\,\vec{\varphi}\,\,}^{\operatorname{T}}</math> and the function <math>\varphi</math> is the assignment <math>\vec{w} \mapsto \vec{\varphi} \, \vec{w},</math> where the right hand side is [[matrix multiplication]]. Then for all <math>w = \left(w_1, \ldots, w_n\right) \in H,</math> <math display=block>\varphi(w) = \varphi_1 w_1 + \cdots + \varphi_n w_n = \left[\varphi_1, \ldots, \varphi_n\right] \begin{bmatrix}w_1 \\ \vdots \\ w_n\end{bmatrix} = \overline{\begin{bmatrix}\overline{\varphi_1} \\ \vdots \\ \overline{\varphi_n}\end{bmatrix}}^{\operatorname{T}} \vec{w} = \overline{\,\vec{f_{\varphi}}\,\,}^{\operatorname{T}} \vec{w} = \left\langle \,\,f_{\varphi}\, \mid \,w\, \right\rangle, </math> which shows that <math>f_{\varphi}</math> satisfies the defining condition of the Riesz representation of <math>\varphi.</math> The bijective antilinear isometry <math>\Phi : H \to H^*</math> defined in the corollary to the Riesz representation theorem is the assignment that sends <math>z = \left(z_1, \ldots, z_n\right) \in H</math> to the linear functional <math>\Phi(z) \in H^*</math> on <math>H</math> defined by <math display=block>w = \left(w_1, \ldots, w_n\right) ~\mapsto~ \langle \,z\, \mid \,w\,\rangle = \overline{z_1} w_1 + \cdots + \overline{z_n} w_n,</math> where under the identification of vectors in <math>H</math> with column matrices and vector in <math>H^*</math> with row matrices, <math>\Phi</math> is just the assignment <math display=block>\vec{z} = \begin{bmatrix}z_1 \\ \vdots \\ z_n\end{bmatrix} ~\mapsto~ \overline{\,\vec{z}\,}^{\operatorname{T}} = \left[\overline{z_1}, \ldots, \overline{z_n}\right].</math> As described in the corollary, <math>\Phi</math>'s inverse <math>\Phi^{-1} : H^* \to H</math> is the antilinear isometry <math>\varphi \mapsto f_{\varphi},</math> which was just shown above to be: <math display=block>\varphi ~\mapsto~ f_{\varphi} ~:=~ \left(\overline{\varphi\left(e_1\right)}, \ldots, \overline{\varphi\left(e_n\right)}\right);</math> where in terms of matrices, <math>\Phi^{-1}</math> is the assignment <math display=block>\vec{\varphi} = \left[\varphi_1, \ldots, \varphi_n\right] ~\mapsto~ \overline{\,\vec{\varphi}\,\,}^{\operatorname{T}} = \begin{bmatrix}\overline{\varphi_1} \\ \vdots \\ \overline{\varphi_n}\end{bmatrix}.</math> Thus in terms of matrices, each of <math>\Phi : H \to H^*</math> and <math>\Phi^{-1} : H^* \to H</math> is just the operation of [[Conjugate transpose|conjugate transposition]] <math>\vec{v} \mapsto \overline{\,\vec{v}\,}^{\operatorname{T}}</math> (although between different spaces of matrices: if <math>H</math> is identified with the space of all column (respectively, row) matrices then <math>H^*</math> is identified with the space of all row (respectively, column matrices). This example used the standard inner product, which is the map <math>\langle z \mid w \rangle := \overline{\,\vec{z}\,\,}^{\operatorname{T}} \vec{w},</math> but if a different inner product is used, such as <math>\langle z \mid w \rangle_M := \overline{\,\vec{z}\,\,}^{\operatorname{T}} \, M \, \vec{w} \,</math> where <math>M</math> is any [[Hermitian matrix|Hermitian]] [[positive-definite matrix]], or if a different orthonormal basis is used then the transformation matrices, and thus also the above formulas, will be different.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riesz representation theorem
(section)
Add topic