Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riemannian manifold
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == === Euclidean space === Let <math>x^1,\ldots,x^n</math> denote the standard coordinates on <math>\mathbb{R}^n.</math> The (canonical) ''Euclidean metric'' <math>g^\text{can}</math> is given by{{sfn|Lee|2018|pp=12β13}} : <math>g^\text{can}\left(\sum_i a_i \frac{\partial}{\partial x^i}, \sum_j b_j \frac{\partial}{\partial x^j} \right) = \sum_i a_i b_i</math> or equivalently : <math>g^\text{can} = (dx^1)^2 + \cdots + (dx^n)^2</math> or equivalently by its coordinate functions : <math>g_{ij}^\text{can} = \delta_{ij}</math> where <math>\delta_{ij}</math> is the [[Kronecker delta]] which together form the matrix : <math>(g_{ij}^\text{can}) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.</math> The Riemannian manifold <math>(\mathbb{R}^n,g^\text{can})</math> is called ''Euclidean space''. === Submanifolds === {{Main|Riemannian submanifold}} [[File:Sphere filled blue.svg|thumb|The [[N-sphere|<math>n</math>-sphere]] <math>S^n</math> with the round metric is an embedded Riemannian submanifold of <math>\mathbb R^{n+1}</math>.]] Let <math>(M,g)</math> be a Riemannian manifold and let <math>i : N \to M</math> be an [[immersed submanifold]] or an [[embedded submanifold]] of <math>M</math>. The [[Pullback (differential geometry)|pullback]] <math>i^*g</math> of <math>g</math> is a Riemannian metric on <math>N</math>, and <math>(N, i^*g)</math> is said to be a ''Riemannian submanifold'' of <math>(M,g)</math>.{{sfn|Lee|2018|p=15}} In the case where <math>N \subseteq M</math>, the map <math>i : N \to M</math> is given by <math>i(x) = x</math> and the metric <math>i^*g</math> is just the restriction of <math>g</math> to vectors tangent along <math>N</math>. In general, the formula for <math>i^*g</math> is : <math>i^*g_p(v,w) = g_{i(p)} \big( di_p(v), di_p(w) \big), </math> where <math>di_p(v)</math> is the [[pushforward (differential)|pushforward]] of <math>v</math> by <math>i.</math> Examples: * The [[N-sphere|<math>n</math>-sphere]] *: <math>S^n=\{x\in\mathbb{R}^{n+1}:(x^1)^2+\cdots+(x^{n+1})^2=1\}</math> :is a smooth embedded submanifold of Euclidean space <math>\mathbb R^{n+1}</math>.{{sfn|Lee|2018|p=16}} The Riemannian metric this induces on <math>S^n</math> is called the ''round metric'' or ''standard metric''. * Fix real numbers <math>a,b,c</math>. The [[ellipsoid]] *:<math>\left\{(x,y,z) \in \mathbb R^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}</math> :is a smooth embedded submanifold of Euclidean space <math>\mathbb R^3</math>. * The [[Graph_of_a_function|graph]] of a smooth function <math>f:\mathbb{R}^n\to\mathbb{R}</math> is a smooth embedded submanifold of <math>\mathbb{R}^{n+1}</math> with its standard metric. * If <math>(M,g)</math> is not simply connected, there is a covering map <math>\widetilde{M}\to M</math>, where <math>\widetilde M</math> is the [[universal cover]] of <math>M</math>. This is an immersion (since it is locally a diffeomorphism), so <math>\widetilde M</math> automatically inherits a Riemannian metric. By the same principle, any [[smooth covering space]] of a Riemannian manifold inherits a Riemannian metric. On the other hand, if <math>N</math> already has a Riemannian metric <math>\tilde g</math>, then the immersion (or embedding) <math>i : N \to M</math> is called an ''[[isometric immersion]]'' (or ''[[isometric embedding]]'') if <math>\tilde g = i^* g</math>. Hence isometric immersions and isometric embeddings are Riemannian submanifolds.{{sfn|Lee|2018|p=15}} === Products === {{multiple image | image1=Grid for torus.svg | image2=Flat torus stereographic.svg | alt1=A 2x2 square grid | alt2=A torus embedded in Euclidean space | footer=A [[torus]] naturally carries a Euclidean metric, obtained by identifying opposite sides of a square (left). The resulting Riemannian manifold, called a [[flat torus]], cannot be isometrically embedded in 3-dimensional Euclidean space (right), because it is necessary to bend and stretch the sheet in doing so. Thus the intrinsic geometry of a flat torus is different from that of an embedded torus.}} Let <math>(M,g)</math> and <math>(N,h)</math> be two Riemannian manifolds, and consider the [[Manifold#Cartesian_products|product manifold]] <math>M\times N</math>. The Riemannian metrics <math>g</math> and <math>h</math> naturally put a Riemannian metric <math>\widetilde{g}</math> on <math>M\times N,</math> which can be described in a few ways. * Considering the decomposition <math>T_{(p,q)}(M\times N) \cong T_pM \oplus T_qN,</math> one may define *: <math>\widetilde{g}_{p,q} ((u_1, u_2), (v_1, v_2)) = g_p(u_1, v_1) + h_q(u_2, v_2).</math>{{sfn|Lee|2018|p=20}} * If <math>(U,x)</math> is a smooth coordinate chart on <math>M</math> and <math>(V,y)</math> is a smooth coordinate chart on <math>N</math>, then <math>(U \times V, (x,y))</math> is a smooth coordinate chart on <math>M \times N.</math> Let <math>g_U</math> be the representation of <math>g</math> in the chart <math>(U,x)</math> and let <math>h_V</math> be the representation of <math>h</math> in the chart <math>(V,y)</math>. The representation of <math>\widetilde{g}</math> in the coordinates <math>(U \times V,(x,y))</math> is *:<math>\widetilde{g} = \sum_{ij} \widetilde{g}_{ij} \, dx^i \, dx^j</math> where <math>(\widetilde{g}_{ij}) = \begin{pmatrix} g_U & 0 \\ 0 & h_V \end{pmatrix}.</math>{{sfn|Lee|2018|p=20}} For example, consider the [[N-torus|<math>n</math>-torus]] <math>T^n = S^1\times\cdots\times S^1</math>. If each copy of <math>S^1</math> is given the round metric, the product Riemannian manifold <math>T^n</math> is called the ''[[flat torus]]''. As another example, the Riemannian product <math>\mathbb R \times \cdots \times \mathbb R</math>, where each copy of <math>\mathbb R</math> has the Euclidean metric, is isometric to <math>\mathbb R^n</math> with the Euclidean metric. === Positive combinations of metrics === Let <math>g_1, \ldots, g_k</math> be Riemannian metrics on <math>M.</math> If <math>f_1, \ldots, f_k</math> are any positive smooth functions on <math>M</math>, then <math>f_1 g_1 + \ldots + f_k g_k</math> is another Riemannian metric on <math>M.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riemannian manifold
(section)
Add topic