Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Polynomial
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Division === The division of one polynomial by another is not typically a polynomial. Instead, such ratios are a more general family of objects, called ''[[rational fraction]]s'', ''rational expressions'', or ''[[rational function]]s'', depending on context.<ref>{{cite book|last1 = Marecek | first1 = Lynn | last2 = Mathis | first2 = Andrea Honeycutt | title = Intermediate Algebra 2e | date = 6 May 2020 | publisher = [[OpenStax]] <!-- | location = Houston, Texas -->| url = https://openstax.org/details/books/intermediate-algebra-2e | at = Β§7.1}}</ref> This is analogous to the fact that the ratio of two [[integer]]s is a [[rational number]], not necessarily an integer.<ref>{{Cite book|last1=Haylock|first1=Derek|url=https://books.google.com/books?id=hgAr3maZeQUC&q=division+integers+not+closed&pg=PA49|title=Understanding Mathematics for Young Children: A Guide for Foundation Stage and Lower Primary Teachers|last2=Cockburn|first2=Anne D.|date=2008-10-14|publisher=SAGE|isbn=978-1-4462-0497-9|pages=49|language=en|quote=We find that the set of integers is not closed under this operation of division.}}</ref><ref name = openstax>{{harvnb|Marecek|Mathis|2020|loc=Β§5.4]}}</ref> For example, the fraction {{math|1/(''x''<sup>2</sup> + 1)}} is not a polynomial, and it cannot be written as a finite sum of powers of the variable {{mvar|x}}. For polynomials in one variable, there is a notion of [[Euclidean division of polynomials]], generalizing the [[Euclidean division]] of integers.{{efn|This paragraph assumes that the polynomials have coefficients in a [[field (mathematics)|field]].}} This notion of the division {{math|''a''(''x'')/''b''(''x'')}} results in two polynomials, a ''quotient'' {{math|''q''(''x'')}} and a ''remainder'' {{math|''r''(''x'')}}, such that {{math|''a'' {{=}} ''b'' ''q'' + ''r''}} and {{math|degree(''r'') < degree(''b'')}}. The quotient and remainder may be computed by any of several algorithms, including [[polynomial long division]] and [[synthetic division]].<ref>{{cite book |first1=Peter H. |last1=Selby |first2=Steve |last2=Slavin |title=Practical Algebra: A Self-Teaching Guide |date=1991 |publisher=Wiley |isbn=978-0-471-53012-1 |edition=2nd}}</ref> When the denominator {{math|''b''(''x'')}} is [[monic polynomial|monic]] and linear, that is, {{math|1=''b''(''x'') = ''x'' β ''c''}} for some constant {{mvar|c}}, then the [[polynomial remainder theorem]] asserts that the remainder of the division of {{math|''a''(''x'')}} by {{math|''b''(''x'')}} is the [[#evaluation|evaluation]] {{math|''a''(''c'')}}.<ref name = openstax/> In this case, the quotient may be computed by [[Ruffini's rule]], a special case of synthetic division.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Ruffini's Rule|url=https://mathworld.wolfram.com/RuffinisRule.html|access-date=2020-07-25|website=mathworld.wolfram.com|language=en}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Polynomial
(section)
Add topic