Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Nuclear power
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Fuel cycle == [[File:Nuclear Fuel Cycle.png|thumb|The nuclear fuel cycle begins when uranium is mined, enriched, and manufactured into nuclear fuel (1), which is delivered to a [[nuclear power plant]]. After use, the spent fuel is delivered to a reprocessing plant (2) or to a final repository (3). In [[nuclear reprocessing]], 95% of spent fuel can potentially be recycled to be returned to use in a power plant (4).]] {{Main|Nuclear fuel cycle|Integrated Nuclear Fuel Cycle Information System}} The life cycle of nuclear fuel starts with [[uranium mining]]. The [[uranium ore]] is then converted into a compact [[ore concentrate]] form, known as [[yellowcake]] (U<sub>3</sub>O<sub>8</sub>), to facilitate transport.<ref name="nrc_fuel">{{cite web |title=Stages of the Nuclear Fuel Cycle |url=https://www.nrc.gov/materials/fuel-cycle-fac/stages-fuel-cycle.html |website=NRC Web |publisher=[[Nuclear Regulatory Commission]] |access-date=17 April 2021 |archive-date=20 April 2021 |archive-url=https://web.archive.org/web/20210420203721/https://www.nrc.gov/materials/fuel-cycle-fac/stages-fuel-cycle.html |url-status=live }}</ref> Fission reactors generally need [[uranium-235]], a [[fissile material|fissile]] [[isotopes of uranium|isotope of uranium]]. The concentration of uranium-235 in natural uranium is low (about 0.7%). Some reactors can use this natural uranium as fuel, depending on their [[neutron economy]]. These reactors generally have graphite or [[heavy water]] moderators. For light water reactors, the most common type of reactor, this concentration is too low, and it must be increased by a process called [[uranium enrichment]].<ref name="nrc_fuel"/> In civilian light water reactors, uranium is typically enriched to 3.5{{ndash}}5% uranium-235.<ref name="wna_fuel"/> The uranium is then generally converted into [[uranium oxide]] (UO<sub>2</sub>), a ceramic, that is then compressively [[sintered]] into fuel pellets, a stack of which forms [[fuel rod]]s of the proper composition and geometry for the particular reactor.<ref name="wna_fuel">{{cite web |title=Nuclear Fuel Cycle Overview |url=https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/introduction/nuclear-fuel-cycle-overview.aspx |website=www.world-nuclear.org |publisher=World Nuclear Association |access-date=17 April 2021 |archive-date=20 April 2021 |archive-url=https://web.archive.org/web/20210420112134/https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/introduction/nuclear-fuel-cycle-overview.aspx |url-status=live }}</ref> After some time in the reactor, the fuel will have reduced fissile material and increased fission products, until its use becomes impractical.<ref name="wna_fuel"/> At this point, the spent fuel will be moved to a [[spent fuel pool]] which provides cooling for the thermal heat and shielding for ionizing radiation. After several months or years, the spent fuel is radioactively and thermally cool enough to be moved to dry storage casks or reprocessed.<ref name="wna_fuel"/> === Uranium resources === {{Main|Uranium market|Uranium mining|Energy development#Nuclear}} [[File:Uranium enrichment proportions (horizontal).svg|upright=2|thumb|Proportions of the isotopes [[uranium-238]] (blue) and uranium-235 (red) found in natural uranium and in [[enriched uranium]] for different applications. Light water reactors use 3{{ndash}}5% enriched uranium, while [[CANDU]] reactors work with natural uranium.]] [[Uranium]] is a fairly common [[chemical element|element]] in the Earth's crust: it is approximately as common as [[tin]] or [[germanium]], and is about 40 times more common than [[silver]].<ref>{{cite encyclopedia |url=http://www.encyclopedia.com/topic/uranium.aspx |title=uranium Facts, information, pictures | Encyclopedia.com articles about uranium |encyclopedia=Encyclopedia.com |date=2001-09-11 |access-date=2013-06-14 |archive-date=2016-09-13 |archive-url=https://web.archive.org/web/20160913203913/http://www.encyclopedia.com/topic/uranium.aspx |url-status=live }}</ref> Uranium is present in trace concentrations in most rocks, dirt, and ocean water, but is generally economically extracted only where it is present in relatively high concentrations. Uranium mining can be underground, [[Open-pit mining|open-pit]], or [[in-situ leach]] mining. An increasing number of the highest output mines are remote underground operations, such as [[McArthur River uranium mine]], in Canada, which by itself accounts for 13% of global production. As of 2011 the world's known resources of uranium, economically recoverable at the arbitrary price ceiling of US$130/kg, were enough to last for between 70 and 100 years.<ref>{{cite web |url=http://www.spp.nus.edu.sg/docs/policy-briefs/201101_RSU_PolicyBrief_1-2nd_Thought_Nuclear-Sovacool.pdf |title=Second Thoughts About Nuclear Power |website=A Policy Brief – Challenges Facing Asia |date=January 2011 |archive-url=https://web.archive.org/web/20130116084833/http://spp.nus.edu.sg/docs/policy-briefs/201101_RSU_PolicyBrief_1-2nd_Thought_Nuclear-Sovacool.pdf |archive-date=January 16, 2013 |access-date=September 11, 2012 |url-status=dead }}</ref><ref>{{cite web | url= http://www.nea.fr/html/general/press/2008/2008-02.html | title= Uranium resources sufficient to meet projected nuclear energy requirements long into the future | date= 2008-06-03 | publisher= [[Nuclear Energy Agency]] (NEA) | access-date= 2008-06-16 | archive-url= https://web.archive.org/web/20081205121250/http://www.nea.fr/html/general/press/2008/2008-02.html | archive-date= 2008-12-05 | url-status= dead }}</ref><ref name="Red">{{cite book |year=2008 |title=Uranium 2007 – Resources, Production and Demand |url=http://www.oecdbookshop.org/oecd/display.asp?sf1=identifiers&st1=9789264047662 |publisher=[[Nuclear Energy Agency]], [[Organisation for Economic Co-operation and Development]] |isbn=978-92-64-04766-2 |archive-url=https://web.archive.org/web/20090130092151/http://www.oecdbookshop.org/oecd/display.asp?sf1=identifiers&st1=9789264047662 |archive-date=2009-01-30 }}</ref> In 2007, the OECD estimated 670 years of economically recoverable uranium in total conventional resources and [[phosphate]] ores assuming the then-current use rate.<ref>{{cite web |url=https://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf |title=Energy Supply |page=271 |archive-url=https://web.archive.org/web/20071215202932/http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf |archive-date=2007-12-15}} and table 4.10.</ref> Light water reactors make relatively inefficient use of nuclear fuel, mostly using only the very rare uranium-235 isotope.<ref name="wna-wmitnfc">{{cite web |url=http://www.world-nuclear.org/info/inf04.html |title=Waste Management in the Nuclear Fuel Cycle |access-date=2006-11-09 |publisher=World Nuclear Association |year=2006 |website=Information and Issue Briefs |archive-date=2010-06-11 |archive-url=https://web.archive.org/web/20100611201409/http://www.world-nuclear.org/info/inf04.html |url-status=dead }}</ref> [[Nuclear reprocessing]] can make this waste reusable, and newer reactors also achieve a more efficient use of the available resources than older ones.<ref name="wna-wmitnfc"/> With a pure [[fast reactor]] fuel cycle with a burn up of all the uranium and [[actinide]]s (which presently make up the most hazardous substances in nuclear waste), there is an estimated 160,000 years worth of uranium in total conventional resources and phosphate ore at the price of 60–100 US$/kg.<ref>{{cite web |url=https://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf |title=Energy Supply |page=271 |archive-url=https://web.archive.org/web/20071215202932/http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter4.pdf |archive-date=2007-12-15}} and figure 4.10.</ref> However, reprocessing is expensive, possibly dangerous and can be used to manufacture nuclear weapons.<ref name="repr"/><ref name="future1">{{cite web |title=Toward an Assessment of Future Proliferation Risk |url=https://cpb-us-e1.wpmucdn.com/blogs.gwu.edu/dist/3/1964/files/2021/03/Mark_Hibbs.pdf |access-date=25 November 2021 |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125145228/https://cpb-us-e1.wpmucdn.com/blogs.gwu.edu/dist/3/1964/files/2021/03/Mark_Hibbs.pdf |url-status=live }}</ref><ref name="pluto">{{cite journal |last1=Zhang |first1=Hui |title=Plutonium reprocessing, breeder reactors, and decades of debate: A Chinese response |journal=Bulletin of the Atomic Scientists |date=1 July 2015 |volume=71 |issue=4 |pages=18–22 |doi=10.1177/0096340215590790 |s2cid=145763632 |language=en |issn=0096-3402}}</ref><ref name="civlib">{{cite journal |last1=Martin |first1=Brian |date=1 January 2015 |title=Nuclear power and civil liberties |url=https://ro.uow.edu.au/lhapapers/2126/ |url-status=live |journal=Faculty of Law, Humanities and the Arts – Papers (Archive) |pages=1–6 |archive-url=https://web.archive.org/web/20211125145241/https://ro.uow.edu.au/lhapapers/2126/ |archive-date=25 November 2021 |access-date=26 November 2021}}</ref><ref name="detect">{{cite journal |last1=Kemp |first1=R. Scott |title=Environmental Detection of Clandestine Nuclear Weapon Programs |journal=Annual Review of Earth and Planetary Sciences |date=29 June 2016 |volume=44 |issue=1 |pages=17–35 |doi=10.1146/annurev-earth-060115-012526 |bibcode=2016AREPS..44...17K |hdl=1721.1/105171 |url=https://www.annualreviews.org/doi/full/10.1146/annurev-earth-060115-012526 |language=en |issn=0084-6597 |quote=Although commercial reprocessing involves large, expensive facilities, some of which are identifiable in structure, a small, makeshift operation using standard industrial supplies is feasible (Ferguson 1977, US GAO 1978). Such a plant could be constructed to have no visual signatures that would reveal its location by overhead imaging, could be built in several months, and once operational could produce weapon quantities of fissile material in several days |hdl-access=free |access-date=26 November 2021 |archive-date=25 November 2021 |archive-url=https://web.archive.org/web/20211125145230/https://www.annualreviews.org/doi/full/10.1146/annurev-earth-060115-012526 |url-status=live }}</ref> One analysis found that uranium prices could increase by two orders of magnitude between 2035 and 2100 and that there could be a shortage near the end of the century.<ref>{{cite journal |last1=Monnet |first1=Antoine |last2=Gabriel |first2=Sophie |last3=Percebois |first3=Jacques |title=Long-term availability of global uranium resources |journal=Resources Policy |date=1 September 2017 |volume=53 |pages=394–407 |doi=10.1016/j.resourpol.2017.07.008 |bibcode=2017RePol..53..394M |language=en |issn=0301-4207 |url=https://tel.archives-ouvertes.fr/tel-01530739/file/2016_MONNET_diff.pdf |quote=However, it can be seen that the simulation in scenario A3 stops in 2075 due to a shortage: the R/P ratio cancels itself out. The detailed calculations also show that even though it does not cancel itself out in scenario C2, the R/P ratio constantly deteriorates, falling from 130 years in 2013 to 10 years around 2100, which raises concerns of a shortage around that time. The exploration constraints thus affect the security of supply. |access-date=1 December 2021 |archive-date=31 October 2021 |archive-url=https://web.archive.org/web/20211031090212/https://tel.archives-ouvertes.fr/tel-01530739/file/2016_MONNET_diff.pdf |url-status=live }}</ref> A 2017 study by researchers from [[Massachusetts Institute of Technology|MIT]] and [[Woods Hole Oceanographic Institution|WHOI]] found that "at the current consumption rate, global conventional reserves of terrestrial uranium (approximately 7.6 million tonnes) could be depleted in a little over a century".<ref>{{cite conference |last1=Haji |first1=Maha N. |last2=Drysdale |first2=Jessica |last3=Buesseler |first3=Ken |last4=Slocum |first4=Alexander H. |title=Ocean Testing of a Symbiotic Device to Harvest Uranium From Seawater Through the Use of Shell Enclosures |book-title=Proceedings of the 27th International Ocean and Polar Engineering Conference |date=25 June 2017 |url=https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE17/All-ISOPE17/ISOPE-I-17-356/17896 |publisher=International Society of Offshore and Polar |via=OnePetro |language=en |access-date=28 November 2021 |archive-date=26 November 2021 |archive-url=https://web.archive.org/web/20211126185614/https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE17/All-ISOPE17/ISOPE-I-17-356/17896 |url-status=live }}</ref> Limited uranium-235 supply may inhibit substantial expansion with the current nuclear technology.<ref name="sol1"/> While various ways to reduce dependence on such resources are being explored,<ref>{{cite journal |last1=Chen |first1=Yanxin |last2=Martin |first2=Guillaume |last3=Chabert |first3=Christine |last4=Eschbach |first4=Romain |last5=He |first5=Hui |last6=Ye |first6=Guo-an |title=Prospects in China for nuclear development up to 2050 |journal=Progress in Nuclear Energy |date=1 March 2018 |volume=103 |pages=81–90 |doi=10.1016/j.pnucene.2017.11.011 |bibcode=2018PNuE..103...81C |s2cid=126267852 |language=en |issn=0149-1970 |url=https://hal-cea.archives-ouvertes.fr/cea-01908268/file/Chen%20-%202018%20-%20PNE%20-%20Chinese%20scenarios%20up%20to%202050.pdf |access-date=1 December 2021 |archive-date=16 December 2021 |archive-url=https://web.archive.org/web/20211216102121/https://hal-cea.archives-ouvertes.fr/cea-01908268/file/Chen%20-%202018%20-%20PNE%20-%20Chinese%20scenarios%20up%20to%202050.pdf |url-status=live }}</ref><ref>{{cite journal |last1=Gabriel |first1=Sophie |last2=Baschwitz |first2=Anne |last3=Mathonnière |first3=Gilles |last4=Eleouet |first4=Tommy |last5=Fizaine |first5=Florian |title=A critical assessment of global uranium resources, including uranium in phosphate rocks, and the possible impact of uranium shortages on nuclear power fleets |journal=Annals of Nuclear Energy |date=1 August 2013 |volume=58 |pages=213–220 |doi=10.1016/j.anucene.2013.03.010 |bibcode=2013AnNuE..58..213G |language=en |issn=0306-4549}}</ref><ref>{{cite journal |last1=Shang |first1=Delei |last2=Geissler |first2=Bernhard |last3=Mew |first3=Michael |last4=Satalkina |first4=Liliya |last5=Zenk |first5=Lukas |last6=Tulsidas |first6=Harikrishnan |last7=Barker |first7=Lee |last8=El-Yahyaoui |first8=Adil |last9=Hussein |first9=Ahmed |last10=Taha |first10=Mohamed |last11=Zheng |first11=Yanhua |last12=Wang |first12=Menglai |last13=Yao |first13=Yuan |last14=Liu |first14=Xiaodong |last15=Deng |first15=Huidong |last16=Zhong |first16=Jun |last17=Li |first17=Ziying |last18=Steiner |first18=Gerald |last19=Bertau |first19=Martin |last20=Haneklaus |first20=Nils |title=Unconventional uranium in China's phosphate rock: Review and outlook |journal=Renewable and Sustainable Energy Reviews |date=1 April 2021 |volume=140 |page=110740 |doi=10.1016/j.rser.2021.110740 |bibcode=2021RSERv.14010740S |s2cid=233577205 |language=en |issn=1364-0321}}</ref> new nuclear technologies are considered to not be available in time for climate change mitigation purposes or competition with alternatives of renewables in addition to being more expensive and require costly research and development.<ref name="sol1"/><ref name="10.5281/zenodo.5573718"/><ref name="mil1"/> A study found it to be uncertain whether identified resources will be developed quickly enough to provide uninterrupted fuel supply to expanded nuclear facilities<ref>{{cite web |title=USGS Scientific Investigations Report 2012–5239: Critical Analysis of World Uranium Resources |url=https://pubs.usgs.gov/sir/2012/5239/ |website=pubs.usgs.gov |access-date=28 November 2021 |archive-date=19 January 2022 |archive-url=https://web.archive.org/web/20220119075200/http://pubs.usgs.gov/sir/2012/5239/ |url-status=live }}</ref> and various forms of mining may be challenged by ecological barriers, costs, and land requirements.<ref>{{cite journal |last=Barthel |first=F. H. |date=2007 |title=Thorium and unconventional uranium resources |url=https://inis.iaea.org/search/search.aspx?orig_q=RN:39023282 |url-status=live |language=en |archive-url=https://web.archive.org/web/20211128121630/https://inis.iaea.org/search/search.aspx?orig_q=RN:39023282 |archive-date=2021-11-28 |access-date=2021-11-28 |website=International Atomic Energy Agency}}</ref><ref>{{cite journal |last1=Dungan |first1=K. |last2=Butler |first2=G. |last3=Livens |first3=F. R. |last4=Warren |first4=L. M. |title=Uranium from seawater – Infinite resource or improbable aspiration? |journal=Progress in Nuclear Energy |date=1 August 2017 |volume=99 |pages=81–85 |doi=10.1016/j.pnucene.2017.04.016 |bibcode=2017PNuE...99...81D |language=en |issn=0149-1970}}</ref> Researchers also report considerable import dependence of nuclear energy.<ref>{{cite journal |last1=Fang |first1=Jianchun |last2=Lau |first2=Chi Keung Marco |last3=Lu |first3=Zhou |last4=Wu |first4=Wanshan |title=Estimating Peak uranium production in China – Based on a Stella model |journal=Energy Policy |date=1 September 2018 |volume=120 |pages=250–258 |doi=10.1016/j.enpol.2018.05.049 |bibcode=2018EnPol.120..250F |s2cid=158066671 |language=en |issn=0301-4215|url=https://pure.hud.ac.uk/en/publications/4f2be679-fb50-4267-81ef-7cb2a5fe0f1d }}</ref><ref name="10.1016/j.enpol.2018.12.024"/><ref name="10.1016/j.anucene.2017.08.019"/><ref name="10.1002/ente.201600444"/> Unconventional uranium resources also exist. Uranium is naturally present in seawater at a concentration of about 3 [[microgram]]s per liter,<ref name="books.google.ie">{{Cite book |last1=Ferronsky |first1=V. I. |url=https://books.google.com/books?id=OeEUcIRsIwAC&q=Radium+and+thorium+isotopes+in+the+surface+waters+of+the+East+Pacific+and+coastal+southern+California.+Earth+Planet.+Sci.+Lett.,+39:+235249.&pg=PA598 |title=Isotopes of the Earth's Hydrosphere |last2=Polyakov |first2=V. A. |publisher=Springer |year=2012 |isbn=978-94-007-2856-1 |page=399}}</ref><ref>{{Cite web |url=http://www.atsdr.cdc.gov/toxprofiles/tp147.pdf |title=Toxicological profile for thorium |year=1990 |publisher=Agency for Toxic Substances and Disease Registry |page=76 |quote=world average concentration in seawater is 0.05 μg/L (Harmsen and De Haan 1980) |access-date=2018-10-09 |archive-date=2018-04-22 |archive-url=https://web.archive.org/web/20180422083351/https://www.atsdr.cdc.gov/toxprofiles/tp147.pdf |url-status=live }}</ref><ref>{{Cite journal |last1=Huh |first1=C. A. |last2=Bacon |first2=M. P. |year=2002 |title=Determination of thorium concentration in seawater by neutron activation analysis |journal=Analytical Chemistry |volume=57 |issue=11 |pages=2138–2142 |doi=10.1021/ac00288a030}}</ref> with 4.4 billion tons of uranium considered present in seawater at any time.<ref name="gepr.org" /> In 2014 it was suggested that it would be economically competitive to produce nuclear fuel from seawater if the process was implemented at large scale.<ref>{{Cite journal |doi=10.3390/jmse2010081|title=Development of a Kelp-Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology|journal=Journal of Marine Science and Engineering|volume=2|pages=81–92|year=2014|last1=Wang|first1=Taiping|last2=Khangaonkar|first2=Tarang|last3=Long|first3=Wen|last4=Gill|first4=Gary|issue=1 |doi-access=free|bibcode=2014JMSE....2...81W }}</ref> Like fossil fuels, over geological timescales, uranium extracted on an industrial scale from seawater would be replenished by both river erosion of rocks and the natural process of uranium [[leaching (metallurgy)|dissolved]] from the surface area of the ocean floor, both of which maintain the [[Solubility equilibrium|solubility equilibria]] of seawater concentration at a stable level.<ref name="gepr.org">{{cite web|url=http://www.gepr.org/en/contents/20130729-01/|title=The current state of promising research into extraction of uranium from seawater – Utilization of Japan's plentiful seas|first=Noriaki|last=Seko|publisher=Global Energy Policy Research|date=July 29, 2013|access-date=October 9, 2018|archive-date=October 9, 2018|archive-url=https://web.archive.org/web/20181009172251/http://www.gepr.org/en/contents/20130729-01/|url-status=live}}</ref> Some commentators have argued that this strengthens the case for [[Nuclear power proposed as renewable energy|nuclear power to be considered a renewable energy]].<ref>{{cite journal |vauthors=Alexandratos SD, Kung S |journal=Industrial & Engineering Chemistry Research |date=April 20, 2016 |volume=55 |issue=15 |pages=4101–4362 |title=Uranium in Seawater |doi=10.1021/acs.iecr.6b01293 |doi-access=free}}</ref> === Waste === {{main|Nuclear waste}} [[File:Nuclear fuel composition.svg|upright=1.5|thumb|Typical composition of [[uranium dioxide]] fuel before and after approximately three years in the [[once-through nuclear fuel cycle]] of a [[LWR]]<ref name="jaif">{{cite web|url=http://www.jaif.or.jp/ja/wnu_si_intro/document/08-07-16-finck_philip.pdf | title=Current Options for the Nuclear Fuel Cycle |publisher=JAIF |author=Finck, Philip| archive-url=https://web.archive.org/web/20120412130546/http://www.jaif.or.jp/ja/wnu_si_intro/document/08-07-16-finck_philip.pdf | archive-date=2012-04-12 }}</ref>]] The normal operation of nuclear power plants and facilities produce [[radioactive waste]], or nuclear waste. This type of waste is also produced during plant decommissioning. There are two broad categories of nuclear waste: low-level waste and high-level waste.<ref name=nrc_waste/> The first has low radioactivity and includes contaminated items such as clothing, which poses limited threat. High-level waste is mainly the spent fuel from nuclear reactors, which is very radioactive and must be cooled and then safely disposed of or reprocessed.<ref name=nrc_waste>{{cite web |title=Backgrounder on Radioactive Waste |url=https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/radwaste.html |website=NRC |publisher=[[Nuclear Regulatory Commission]] |access-date=20 April 2021 |archive-date=13 November 2017 |archive-url=https://web.archive.org/web/20171113004118/https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/radwaste.html |url-status=live }}</ref> ==== High-level waste ==== {{main|High-level waste|Spent nuclear fuel}} [[File:Spent nuclear fuel decay sievert.jpg|thumb|upright=1.5|Activity of spent UOx fuel in comparison to the activity of natural [[uranium ore]] over time<ref name="m.phys.org">{{Cite web | url=https://m.phys.org/news/2017-11-fast-reactor-shorten-lifetime-long-lived.html |title = A fast reactor system to shorten the lifetime of long-lived fission products}}</ref><ref name="jaif"/>]] [[File:Nuclear dry storage.jpg|thumb|[[Dry cask storage]] vessels storing spent nuclear fuel assemblies]] The most important waste stream from nuclear power reactors is [[spent nuclear fuel]], which is considered [[high-level waste]]. For Light Water Reactors (LWRs), spent fuel is typically composed of 95% uranium, 4% [[fission product]]s, and about 1% [[transuranic]] [[actinides]] (mostly [[plutonium]], [[neptunium]] and [[americium]]).<ref>{{cite web |title=Radioactivity: Minor Actinides |url=http://www.radioactivity.eu.com/site/pages/Minor_Actinides.htm |website=www.radioactivity.eu.com |access-date=2018-12-23 |archive-date=2018-12-11 |archive-url=https://web.archive.org/web/20181211042617/http://www.radioactivity.eu.com/site/pages/Minor_Actinides.htm |url-status=dead }}</ref> The fission products are responsible for the bulk of the short-term radioactivity, whereas the plutonium and other transuranics are responsible for the bulk of the long-term radioactivity.<ref>{{cite book |last1=Ojovan |first1=Michael I. |title=An introduction to nuclear waste immobilisation, second edition |date=2014 |publisher=Elsevier |location=Kidlington, Oxford, U.K. |isbn=978-0-08-099392-8 |edition=2nd}}</ref> High-level waste (HLW) must be stored isolated from the [[biosphere]] with sufficient shielding so as to limit radiation exposure. After being removed from the reactors, used fuel bundles are stored for six to ten years in [[spent fuel pool]]s, which provide cooling and shielding against radiation. After that, the fuel is cool enough that it can be safely transferred to [[dry cask storage]].<ref>{{Cite web|url=http://nuclearsafety.gc.ca/eng/waste/high-level-waste/index.cfm|title=High-level radioactive waste|publisher=Canadian Nuclear Safety Commission|date=February 3, 2014|website=nuclearsafety.gc.ca|access-date=April 19, 2022|archive-date=April 14, 2022|archive-url=https://web.archive.org/web/20220414190417/http://nuclearsafety.gc.ca/eng/waste/high-level-waste/index.cfm|url-status=dead}}</ref> The radioactivity decreases exponentially with time, such that it will have decreased by 99.5% after 100 years.<ref>{{cite tech report |last1=Hedin |first1=A. |title=Spent nuclear fuel - how dangerous is it? A report from the project 'Description of risk' |date=1997 |url=https://www.osti.gov/etdeweb/biblio/587853 |publisher=Energy Technology Data Exchange}}</ref> The more intensely radioactive short-lived [[fission products]] (SLFPs) decay into stable elements in approximately 300 years, and after about 100,000 years, the spent fuel becomes less radioactive than natural uranium ore.<ref name="jaif"/><ref>{{cite book |last1=Bruno |first1=Jordi |last2=Duro |first2=Laura |last3=Diaz-Maurin |first3=François |date=2020 |title=Advances in Nuclear Fuel Chemistry |chapter=Chapter 13 – Spent nuclear fuel and disposal |series=Woodhead Publishing Series in Energy |pages=527–553 |chapter-url=https://www.sciencedirect.com/science/article/pii/B9780081025710000148 |publisher=Woodhead Publishing |doi=10.1016/B978-0-08-102571-0.00014-8 |isbn=978-0-08-102571-0 |s2cid=216544356 |access-date=2021-09-20 |archive-date=2021-09-20 |archive-url=https://web.archive.org/web/20210920212807/https://www.sciencedirect.com/science/article/pii/B9780081025710000148 |url-status=live }}</ref> Commonly suggested methods to isolate LLFP waste from the biosphere include separation and [[Nuclear transmutation|transmutation]],<ref name="jaif"/> [[synroc]] treatments, or deep geological storage.<ref>{{cite book |last1=Ojovan |first1=M. I. |title=An Introduction to Nuclear Waste Immobilisation |last2=Lee |first2=W. E. |publisher=Elsevier Science Publishers |year=2005 |isbn=978-0-08-044462-8 |location=Amsterdam, Netherlands |page=315}}</ref><ref>{{cite book |title=Technical Bases for Yucca Mountain Standards |author=National Research Council |year=1995 |publisher=National Academy Press |location=Washington, DC |isbn=978-0-309-05289-4|url=https://books.google.com/books?id=1DLyAtgVPy0C&pg=PA91|page=91}}</ref><ref>{{cite web |url=http://www.aps.org/units/fps/newsletters/2006/january/article1.html |title=The Status of Nuclear Waste Disposal |date=January 2006 |publisher=The American Physical Society |access-date=2008-06-06 |archive-date=2008-05-16 |archive-url=https://web.archive.org/web/20080516010935/http://www.aps.org/units/fps/newsletters/2006/january/article1.html |url-status=live }}</ref><ref>{{cite web |url=http://www.epa.gov/radiation/docs/yucca/70fr49013.pdf |title=Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Proposed Rule |date=2005-08-22 |publisher=United States Environmental Protection Agency |access-date=2008-06-06 |archive-date=2008-06-26 |archive-url=https://web.archive.org/web/20080626191551/http://www.epa.gov/radiation/docs/yucca/70fr49013.pdf |url-status=live }}</ref> [[Thermal-neutron reactor]]s, which presently constitute the majority of the world fleet, cannot burn up the [[reactor grade plutonium]] that is generated during the reactor operation. This limits the life of nuclear fuel to a few years. In some countries, such as the United States, spent fuel is classified in its entirety as a nuclear waste.<ref>{{cite web |url=https://fas.org/sgp/crs/misc/RL32163.pdf |title=CRS Report for Congress. Radioactive Waste Streams: Waste Classification for Disposal |quote=The Nuclear Waste Policy Act of 1982 (NWPA) defined irradiated fuel as spent nuclear fuel, and the byproducts as high-level waste. |access-date=2018-12-22 |archive-date=2017-08-29 |archive-url=https://web.archive.org/web/20170829231541/https://fas.org/sgp/crs/misc/RL32163.pdf |url-status=live }}</ref> In other countries, such as France, it is largely reprocessed to produce a partially recycled fuel, known as mixed oxide fuel or [[MOX]]. For spent fuel that does not undergo reprocessing, the most concerning isotopes are the medium-lived [[transuranic element]]s, which are led by reactor-grade plutonium (half-life 24,000 years).<ref>{{harvnb|Vandenbosch|2007|p=21.|Ref=none}}</ref> Some proposed reactor designs, such as the [[integral fast reactor]] and [[molten salt reactor]]s, can use as fuel the plutonium and other actinides in spent fuel from light water reactors, thanks to their [[fast fission]] spectrum. This offers a potentially more attractive alternative to deep geological disposal.<ref>{{cite news |author=Clark |first=Duncan |date=2012-07-09 |title=Nuclear waste-burning reactor moves a step closer to reality |url=https://www.theguardian.com/environment/2012/jul/09/nuclear-waste-burning-reactor |url-status=live |archive-url=https://web.archive.org/web/20221008223126/https://www.theguardian.com/environment/2012/jul/09/nuclear-waste-burning-reactor |archive-date=2022-10-08 |access-date=2013-06-14 |newspaper=Guardian |location=London, England}}</ref><ref>{{cite web |author=Monbiot |first=George |date=5 December 2011 |title=A Waste of Waste |url=http://www.monbiot.com/2011/12/05/a-waste-of-waste/ |url-status=live |archive-url=https://web.archive.org/web/20130601052759/http://www.monbiot.com/2011/12/05/a-waste-of-waste/ |archive-date=2013-06-01 |access-date=2013-06-14 |publisher=Monbiot.com}}</ref><ref>{{cite web|url=https://www.youtube.com/watch?v=AZR0UKxNPh8 |archive-url=https://ghostarchive.org/varchive/youtube/20211211/AZR0UKxNPh8| archive-date=2021-12-11 |url-status=live|title=Energy From Thorium: A Nuclear Waste Burning Liquid Salt Thorium Reactor |publisher=YouTube |date=2009-07-23 |access-date=2013-06-14}}{{cbignore}}</ref> The [[thorium fuel cycle]] results in similar fission products, though creates a much smaller proportion of transuranic elements from [[neutron capture]] events within a reactor. Spent thorium fuel, although more difficult to handle than spent uranium fuel, may present somewhat lower proliferation risks.<ref>{{cite web |title=Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems |url=https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1540_web.pdf |publisher=IAEA |access-date=7 April 2021 |date=2012 |quote=Once irradiated in a reactor, the fuel of a thorium–uranium cycle contains an admixture of 232U (half-life 68.9 years) whose radioactive decay chain includes emitters (particularly 208Tl) of high energy gamma radiation (2.6{{nbsp}}MeV). This makes spent thorium fuel treatment more difficult, requires remote handling/control during reprocessing and during further fuel fabrication, but on the other hand, may be considered as an additional non-proliferation barrier. |archive-date=6 May 2021 |archive-url=https://web.archive.org/web/20210506123715/https://www-pub.iaea.org/MTCD/publications/PDF/Pub1540_web.pdf |url-status=live }}</ref> ==== Low-level waste ==== {{main|Low-level waste}} The nuclear industry also produces a large volume of [[low-level waste]], with low radioactivity, in the form of contaminated items like clothing, hand tools, water purifier resins, and (upon decommissioning) the materials of which the reactor itself is built. Low-level waste can be stored on-site until radiation levels are low enough to be disposed of as ordinary waste, or it can be sent to a low-level waste disposal site.<ref>{{cite web |title=NRC: Low-Level Waste |url=https://www.nrc.gov/waste/low-level-waste.html |website=www.nrc.gov |access-date=28 August 2018 |language=en |archive-date=17 August 2018 |archive-url=https://web.archive.org/web/20180817193533/https://www.nrc.gov/waste/low-level-waste.html |url-status=live }}</ref> ==== Waste relative to other types ==== {{See also|Radioactive waste#Naturally occurring radioactive material}} In countries with nuclear power, radioactive wastes account for less than 1% of total industrial toxic wastes, much of which remains hazardous for long periods.<ref name="wna-wmitnfc" /> Overall, nuclear power produces far less waste material by volume than fossil-fuel based power plants.<ref>{{cite web|url=http://nuclearinfo.net/Nuclearpower/TheRisksOfNuclearPower|title=The Challenges of Nuclear Power|access-date=2013-01-04|archive-date=2017-05-10|archive-url=https://web.archive.org/web/20170510092527/http://nuclearinfo.net/Nuclearpower/TheRisksOfNuclearPower}}</ref> Coal-burning plants, in particular, produce large amounts of toxic and mildly radioactive ash resulting from the concentration of [[naturally occurring radioactive material]]s in coal.<ref>{{cite journal |date=2007-12-13 |title=Coal Ash Is More Radioactive than Nuclear Waste |url=http://www.scientificamerican.com/article.cfm?id=coal-ash-is-more-radioactive-than-nuclear-waste |journal=Scientific American |access-date=2012-09-11 |archive-date=2013-06-12 |archive-url=https://web.archive.org/web/20130612103809/http://www.scientificamerican.com/article.cfm?id=coal-ash-is-more-radioactive-than-nuclear-waste |url-status=live }}</ref> A 2008 report from [[Oak Ridge National Laboratory]] concluded that coal power actually results in more radioactivity being released into the environment than nuclear power operation, and that the population [[effective dose equivalent]] from radiation from coal plants is 100 times that from the operation of nuclear plants.<ref name="colmain">{{cite web |author=Gabbard |first=Alex |date=2008-02-05 |title=Coal Combustion: Nuclear Resource or Danger |url=http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html |url-status=dead |archive-url=https://web.archive.org/web/20070205103749/http://www.ornl.gov/info/ornlreview/rev26-34/text/colmain.html |archive-date=February 5, 2007 |access-date=2008-01-31 |publisher=Oak Ridge National Laboratory}}</ref> Although coal ash is much less radioactive than spent nuclear fuel by weight, coal ash is produced in much higher quantities per unit of energy generated. It is also released directly into the environment as [[fly ash]], whereas nuclear plants use shielding to protect the environment from radioactive materials.<ref name="cejournal">{{cite journal |date=2008-12-31 |title=Coal ash is ''not'' more radioactive than nuclear waste |url= http://www.cejournal.net/?p=410 |journal=CE Journal |archive-url=https://web.archive.org/web/20090827045039/http://www.cejournal.net/?p=410 |archive-date=2009-08-27 }}</ref> Nuclear waste volume is small compared to the energy produced. For example, at [[Yankee Rowe Nuclear Power Station]], which generated 44 billion [[kilowatt hours]] of electricity when in service, its complete spent fuel inventory is contained within sixteen casks.<ref>{{cite web |url=http://www.yankeerowe.com/ |title=Yankee Nuclear Power Plant |publisher=Yankeerowe.com |access-date=2013-06-22 |archive-date=2006-03-03 |archive-url=https://web.archive.org/web/20060303073110/http://www.yankeerowe.com/ |url-status=live }}</ref> It is estimated that to produce a lifetime supply of energy for a person at a western [[standard of living]] (approximately 3{{nbsp}}[[GWh]]) would require on the order of the volume of a [[soda can]] of [[low enriched uranium]], resulting in a similar volume of spent fuel generated.<ref name="Generation Atomic">{{cite web|url=https://www.generationatomic.org/why-nuclear|title=Why nuclear energy|work=Generation Atomic|date=26 January 2021|access-date=22 December 2018|archive-date=23 December 2018|archive-url=https://web.archive.org/web/20181223073651/https://www.generationatomic.org/why-nuclear|url-status=live}}</ref><ref name="npr.org">{{cite news | url=https://www.npr.org/templates/story/story.php?storyId=125740818 | title=NPR Nuclear Waste May Get A Second Life | work=NPR | access-date=2018-12-22 | archive-date=2018-12-23 | archive-url=https://web.archive.org/web/20181223030055/https://www.npr.org/templates/story/story.php?storyId=125740818 | url-status=live }}</ref><ref>{{Cite web|url=https://hypertextbook.com/facts/1998/TommyZhou.shtml|title=Energy Consumption of the United States - The Physics Factbook|website=hypertextbook.com|access-date=2018-12-22|archive-date=2018-12-23|archive-url=https://web.archive.org/web/20181223073750/https://hypertextbook.com/facts/1998/TommyZhou.shtml|url-status=live}}</ref> ==== Waste disposal ==== {{See also|List of radioactive waste treatment technologies}} [[File:WIPP-04.jpeg|alt=Storage of radioactive waste at WIPP|thumb|[[nuclear flask|Nuclear waste flasks]] generated by the United States during the Cold War are stored underground at the [[Waste Isolation Pilot Plant]] (WIPP) in [[New Mexico]]. The facility is seen as a potential demonstration for storing spent fuel from civilian reactors.]] Following interim storage in a [[spent fuel pool]], the bundles of used fuel rod assemblies of a typical nuclear power station are often stored on site in [[dry cask storage]] vessels.<ref>{{cite web |url=https://www.nrc.gov/waste/spent-fuel-storage/dry-cask-storage.html |title=NRC: Dry Cask Storage |publisher=Nrc.gov |date=2013-03-26 |access-date=2013-06-22 |archive-date=2013-06-02 |archive-url=https://web.archive.org/web/20130602195818/http://www.nrc.gov/waste/spent-fuel-storage/dry-cask-storage.html |url-status=live }}</ref> Presently, waste is mainly stored at individual reactor sites and there are over 430 locations around the world where radioactive material continues to accumulate. Disposal of nuclear waste is often considered the most politically divisive aspect in the lifecycle of a nuclear power facility.<ref name=mont2011>Montgomery, Scott L. (2010). ''The Powers That Be'', University of Chicago Press, p. 137.</ref> The lack of movement of nuclear waste in the 2 billion year old [[natural nuclear fission reactor]]s in [[Oklo]], [[Gabon]] is cited as "a source of essential information today."<ref>{{cite web |url= http://www.efn.org.au/NucWaste-Comby.pdf |title= international Journal of Environmental Studies, The Solutions for Nuclear waste, December 2005 |access-date= 2013-06-22 |archive-date= 2013-04-26 |archive-url= https://web.archive.org/web/20130426083758/http://www.efn.org.au/NucWaste-Comby.pdf |url-status= dead }}</ref><ref>{{cite web |url= http://www.ocrwm.doe.gov/factsheets/doeymp0010.shtml |title=Oklo: Natural Nuclear Reactors |publisher=U.S. Department of Energy Office of Civilian Radioactive Waste Management, Yucca Mountain Project, DOE/YMP-0010|date=November 2004 |access-date=2009-09-15 |archive-url=https://web.archive.org/web/20090825013752/http://www.ocrwm.doe.gov/factsheets/doeymp0010.shtml |archive-date=2009-08-25 }}</ref> Experts suggest that centralized underground repositories which are well-managed, guarded, and monitored, would be a vast improvement.<ref name=mont2011 /> There is an "international consensus on the advisability of storing nuclear waste in [[deep geological repository|deep geological repositories]]".<ref name=go /> With the advent of new technologies, other methods including [[horizontal drillhole disposal]] into geologically inactive areas have been proposed.<ref>{{Cite journal|title=Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes|date=May 29, 2019|journal=Energies|doi=10.3390/en12112052|last1=Muller|first1=Richard A.|last2=Finsterle|first2=Stefan|last3=Grimsich|first3=John|last4=Baltzer|first4=Rod|last5=Muller|first5=Elizabeth A.|last6=Rector|first6=James W.|last7=Payer|first7=Joe|last8=Apps|first8=John|volume=12|issue=11|page=2052|doi-access=free}}</ref><ref>{{Cite journal|title=The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste|date=February 14, 2020|journal=Energies|doi=10.3390/en13040833|last1=Mallants|first1=Dirk|last2=Travis|first2=Karl|last3=Chapman|first3=Neil|last4=Brady|first4=Patrick V.|last5=Griffiths|first5=Hefin|volume=13|issue=4|page=833|doi-access=free}}</ref> [[File:Alpha-Gamma Hot Cell Facility 001.jpg|thumb|Most waste packaging, small-scale experimental fuel recycling chemistry and [[radiopharmaceutical]] refinement is conducted within remote-handled [[hot cell]]s.]] There are no commercial scale purpose built underground high-level waste repositories in operation.<ref name="go">{{cite book |last=Gore |first=Al |url=https://archive.org/details/ourchoiceplantos00gore/page/165 |title=Our Choice: A Plan to Solve the Climate Crisis |date=2009 |publisher=Rodale |isbn=978-1-59486-734-7 |location=Emmaus, Pennsylvania |pages=[https://archive.org/details/ourchoiceplantos00gore/page/165 165–166] |url-access=registration}}</ref><ref>{{cite magazine| url= http://www.sciam.com/article.cfm?id=a-nuclear-renaissance&print=true| archive-url= https://archive.today/20120915104757/http://www.sciam.com/article.cfm?id=a-nuclear-renaissance&print=true| archive-date= 2012-09-15| title= A Nuclear Power Renaissance?| date= 2008-04-28| magazine= [[Scientific American]]| access-date= 2008-05-15}}</ref><ref>{{cite magazine | url= http://www.sciam.com/article.cfm?id=rethinking-nuclear-fuel-recycling | title= Nuclear Fuel Recycling: More Trouble Than It's Worth | last= von Hippel | first= Frank N. | author-link= Frank N. von Hippel | date= April 2008 | magazine= Scientific American | access-date= 2008-05-15 | archive-date= 2008-11-19 | archive-url= https://web.archive.org/web/20081119112436/http://www.sciam.com/article.cfm?id=rethinking-nuclear-fuel-recycling | url-status= live }}</ref> However, in Finland the [[Onkalo spent nuclear fuel repository]] of the [[Olkiluoto Nuclear Power Plant]] was under construction as of 2015.<ref>{{Cite web|url=http://www.world-nuclear-news.org/WR-Licence-granted-for-Finnish-used-fuel-repository-1211155.html|title=Licence granted for Finnish used fuel repository|date=2015-11-12|website=World Nuclear News|access-date=2018-11-18|archive-date=2015-11-24|archive-url=https://web.archive.org/web/20151124025533/http://world-nuclear-news.org/WR-Licence-granted-for-Finnish-used-fuel-repository-1211155.html|url-status=live}}</ref> === Reprocessing === {{main|Nuclear reprocessing}} {{see also|Plutonium Management and Disposition Agreement}} Most [[thermal-neutron reactor]]s run on a [[once-through nuclear fuel cycle]], mainly due to the low price of fresh uranium. However, many reactors are also fueled with recycled fissionable materials that remain in spent nuclear fuel. The most common fissionable material that is recycled is the [[reactor-grade plutonium]] (RGPu) that is extracted from spent fuel. It is mixed with uranium oxide and fabricated into mixed-oxide or [[MOX fuel]]. Because thermal LWRs remain the most common reactor worldwide, this type of recycling is the most common. It is considered to increase the sustainability of the nuclear fuel cycle, reduce the attractiveness of spent fuel to theft, and lower the volume of high level nuclear waste.<ref>{{Cite journal|doi=10.1016/j.energy.2014.02.069|title=Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles|journal=Energy|volume=69|pages=199–211|date=May 2014|last1=Poinssot|first1=Ch.|last2=Bourg|first2=S.|last3=Ouvrier|first3=N.|last4=Combernoux|first4=N.|last5=Rostaing|first5=C.|last6=Vargas-Gonzalez|first6=M.|last7=Bruno|first7=J.|doi-access=free|bibcode=2014Ene....69..199P }}</ref> Spent MOX fuel cannot generally be recycled for use in thermal-neutron reactors. This issue does not affect [[fast-neutron reactor]]s, which are therefore preferred in order to achieve the full energy potential of the original uranium.<ref name="berrytoll" /><ref name="IEEE Spectrum">{{cite news|last1=Fairley|first1=Peter|title=Nuclear Wasteland|url=https://spectrum.ieee.org/feb07/4891|work=IEEE Spectrum|date=February 2007|access-date=2020-02-02|archive-date=2020-08-05|archive-url=https://web.archive.org/web/20200805214749/https://spectrum.ieee.org/feb07/4891|url-status=dead}}</ref> The main constituent of spent fuel from LWRs is slightly [[enriched uranium]]. This can be recycled into [[reprocessed uranium]] (RepU), which can be used in a fast reactor, used directly as fuel in [[CANDU]] reactors, or re-enriched for another cycle through an LWR. Re-enriching of reprocessed uranium is common in France and Russia.<ref name="WNA3">{{cite web |url=http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/processing-of-used-nuclear-fuel.aspx |title=Processing of Used Nuclear Fuel |date=2018 |publisher=World Nuclear Association |access-date=2018-12-26 |archive-date=2018-12-25 |archive-url=https://web.archive.org/web/20181225154511/http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/processing-of-used-nuclear-fuel.aspx |url-status=live }}</ref> Reprocessed uranium is also safer in terms of nuclear proliferation potential.<ref>{{cite tech report|url=https://www.osti.gov/biblio/6743129-proliferation-resistant-nuclear-fuel-cycles-spiking-plutonium-sup-pu|title=Proliferation-resistant nuclear fuel cycles. [Spiking of plutonium with /sup 238/Pu]|publisher=Oak Ridge National Laboratory|year=1978|doi=10.2172/6743129|osti=6743129|last1=Campbell|first1=D. O.|last2=Gift|first2=E. H.|via=Office of Scientific and Technical Information}}</ref><ref>{{cite journal |last1=Fedorov |first1=M. I. |last2=Dyachenko |first2=A. I. |last3=Balagurov |first3=N. A. |last4=Artisyuk |first4=V. V. |year=2015 |title=Formation of proliferation-resistant nuclear fuel supplies based on reprocessed uranium for Russian nuclear technologies recipient countries |journal=Nuclear Energy and Technology |volume=1 |issue=2 |pages=111–116 |doi=10.1016/j.nucet.2015.11.023 |doi-access=free|bibcode=2015NEneT...1..111F }}</ref><ref>{{cite journal|title=Proliferation resistant plutonium: An updated analysis|journal=Nuclear Engineering and Design|volume=330|pages=297–302|doi=10.1016/j.nucengdes.2018.02.012|year=2018|last1=Lloyd|first1=Cody|last2=Goddard|first2=Braden|bibcode=2018NuEnD.330..297L }}</ref> Reprocessing has the potential to recover up to 95% of the uranium and plutonium fuel in spent nuclear fuel, as well as reduce long-term radioactivity within the remaining waste. However, reprocessing has been politically controversial because of the potential for [[nuclear proliferation]] and varied perceptions of increasing the vulnerability to [[nuclear terrorism]].<ref name=berrytoll/><ref name=bas2011/> Reprocessing also leads to higher fuel cost compared to the once-through fuel cycle.<ref name=berrytoll>R. Stephen Berry and George S. Tolley, [http://franke.uchicago.edu/energy2013/group6.pdf Nuclear Fuel Reprocessing] {{Webarchive|url=https://web.archive.org/web/20170525170152/http://franke.uchicago.edu/energy2013/group6.pdf |date=2017-05-25 }}, The University of Chicago, 2013.</ref><ref name="bas2011">{{cite web |author=Feiveson |first=Harold |display-authors=etal |year=2011 |title=Managing nuclear spent fuel: Policy lessons from a 10-country study |url=http://www.thebulletin.org/web-edition/features/managing-nuclear-spent-fuel-policy-lessons-10-country-study |url-status=dead |archive-url=https://web.archive.org/web/20120426011518/http://www.thebulletin.org/web-edition/features/managing-nuclear-spent-fuel-policy-lessons-10-country-study |archive-date=2012-04-26 |access-date=2016-07-18 |website=Bulletin of the Atomic Scientists}}</ref> While reprocessing reduces the volume of high-level waste, it does not reduce the [[fission product]]s that are the primary causes of residual heat generation and radioactivity for the first few centuries outside the reactor. Thus, reprocessed waste still requires an almost identical treatment for the initial first few hundred years. Reprocessing of civilian fuel from power reactors is currently done in France, the United Kingdom, Russia, Japan, and India. In the United States, spent nuclear fuel is currently not reprocessed.<ref name="WNA3" /> The [[La Hague site|La Hague reprocessing facility]] in France has operated commercially since 1976 and is responsible for half the world's reprocessing as of 2010.<ref>{{cite book|last=Kok|first=Kenneth D.|title=Nuclear Engineering Handbook|year=2010|publisher=CRC Press|page=332|isbn=978-1-4200-5391-3|url=https://books.google.com/books?id=EMy2OyUrqbUC&pg=PA332}}</ref> It produces MOX fuel from spent fuel derived from several countries. More than 32,000 tonnes of spent fuel had been reprocessed as of 2015, with the majority from France, 17% from Germany, and 9% from Japan.<ref>{{cite news |author=Jarry |first=Emmanuel |date=6 May 2015 |title=Crisis for Areva's plant as clients shun nuclear |url=http://www.mineweb.com/news/energy/crisis-for-arevas-plant-as-clients-shun-nuclear/ |url-status=dead |archive-url=https://web.archive.org/web/20150723193237/http://www.mineweb.com/news/energy/crisis-for-arevas-plant-as-clients-shun-nuclear/ |archive-date=23 July 2015 |access-date=6 May 2015 |newspaper=Moneyweb |agency=Reuters}}</ref> === Breeding === [[File:Nuclear-Fuel.jpg|thumb|upright|[[Nuclear fuel]] assemblies being inspected before entering a [[pressurized water reactor]] in the United States]] {{Main|Breeder reactor|Nuclear power proposed as renewable energy}} Breeding is the process of converting non-fissile material into fissile material that can be used as nuclear fuel. The non-fissile material that can be used for this process is called [[fertile material]], and constitute the vast majority of current nuclear waste. This breeding process occurs naturally in [[breeder reactor]]s. As opposed to light water thermal-neutron reactors, which use uranium-235 (0.7% of all natural uranium), fast-neutron breeder reactors use uranium-238 (99.3% of all natural uranium) or thorium. A number of fuel cycles and breeder reactor combinations are considered to be sustainable or renewable sources of energy.<ref>{{cite journal|title=Future Scenarios for Fission Based Reactors|journal=Nuclear Physics A|volume=751|pages=429–441|bibcode=2005NuPhA.751..429D|last1=David|first1=S.|year=2005|doi=10.1016/j.nuclphysa.2005.02.014}}</ref><ref name="Brundtland">{{cite web|title=Chapter 7: Energy: Choices for Environment and Development|url=http://www.un-documents.net/ocf-07.htm|work=Our Common Future: Report of the World Commission on Environment and Development|first=Gro Harlem|last=Brundtland|location=Oslo|date=20 March 1987|access-date=27 March 2013|quote=Today's primary sources of energy are mainly non-renewable: natural gas, oil, coal, peat, and conventional nuclear power. There are also renewable sources, including wood, plants, dung, falling water, geothermal sources, solar, tidal, wind, and wave energy, as well as human and animal muscle-power. Nuclear reactors that produce their own fuel ('breeders') and eventually fusion reactors are also in this category|archive-date=21 January 2013|archive-url=https://web.archive.org/web/20130121175926/http://www.un-documents.net/ocf-07.htm|url-status=live}}</ref> In 2006 it was estimated that with seawater extraction, there was likely five billion years' worth of uranium resources for use in breeder reactors.<ref name="stanford-cohen">{{cite web |url=http://www-formal.stanford.edu/jmc/progress/cohen.html |title=Facts From Cohen and Others |access-date=2006-11-09 |publisher=Stanford |year=2006 |author=John McCarthy |author-link=John McCarthy (computer scientist) |website=Progress and its Sustainability |archive-url=https://web.archive.org/web/20070410165316/http://www-formal.stanford.edu/jmc/progress/cohen.html |archive-date=2007-04-10 }} Citing: {{cite journal |last1=Cohen |first1=Bernard L. |s2cid=119587950 |title=Breeder reactors: A renewable energy source |journal=American Journal of Physics |date=January 1983 |volume=51 |issue=1 |pages=75–76 |doi=10.1119/1.13440 |bibcode=1983AmJPh..51...75C }}</ref> Breeder technology has been used in several reactors, but as of 2006, the high cost of reprocessing fuel safely requires uranium prices of more than US$200/kg before becoming justified economically.<ref name="wna-anpr">{{cite web |url=http://www.world-nuclear.org/info/inf08.html |title=Advanced Nuclear Power Reactors |access-date=2006-11-09 |publisher=World Nuclear Association |year=2006 |website=Information and Issue Briefs |archive-date=2010-06-15 |archive-url=https://web.archive.org/web/20100615004046/http://www.world-nuclear.org/info/inf08.html |url-status=dead }}</ref> Breeder reactors are however being developed for their potential to burn all of the actinides (the most active and dangerous components) in the present inventory of nuclear waste, while also producing power and creating additional quantities of fuel for more reactors via the breeding process.<ref>{{cite web |url=http://www.worldenergy.org/documents/p001515.pdf |title=Synergy between Fast Reactors and Thermal Breeders for Safe, Clean, and Sustainable Nuclear Power |website=World Energy Council |archive-url=https://web.archive.org/web/20110110121245/http://worldenergy.org/documents/p001515.pdf |archive-date=2011-01-10 |access-date=2013-02-03 |url-status=dead }}</ref><ref>{{cite web |author=Kessler |first=Rebecca |title=Are Fast-Breeder Reactors A Nuclear Power Panacea? by Fred Pearce: Yale Environment 360 |url=http://e360.yale.edu/feature/are_fast-breeder_reactors_a_nuclear_power_panacea/2557/ |url-status=live |archive-url=https://web.archive.org/web/20130605235042/http://e360.yale.edu/feature/are_fast-breeder_reactors_a_nuclear_power_panacea/2557/ |archive-date=2013-06-05 |access-date=2013-06-14 |publisher=E360.yale.edu}}</ref> As of 2017, there are two breeders producing commercial power, [[BN-600 reactor]] and the [[BN-800 reactor]], both in Russia.<ref name=WNAfast>{{cite web |title=Fast Neutron Reactors {{!}} FBR – World Nuclear Association |url=http://www.world-nuclear.org/information-library/current-and-future-generation/fast-neutron-reactors.aspx |website=www.world-nuclear.org |access-date=7 October 2018 |archive-date=23 December 2017 |archive-url=https://web.archive.org/web/20171223183305/http://world-nuclear.org/information-library/current-and-future-generation/fast-neutron-reactors.aspx |url-status=live }}</ref> The [[Phénix]] breeder reactor in France was powered down in 2009 after 36 years of operation.<ref name=WNAfast /> Both China and India are building breeder reactors. The Indian 500 MWe [[Prototype Fast Breeder Reactor]] is in the commissioning phase,<ref>{{cite news |title=Prototype fast breeder reactor to be commissioned in two months: IGCAR director |url=https://timesofindia.indiatimes.com/city/chennai/prototype-fast-breeder-reactor-to-be-commissioned-in-two-months-igcar-director/articleshow/61968967.cms |access-date=28 August 2018 |work=The Times of India |archive-date=15 September 2018 |archive-url=https://web.archive.org/web/20180915114720/https://timesofindia.indiatimes.com/city/chennai/prototype-fast-breeder-reactor-to-be-commissioned-in-two-months-igcar-director/articleshow/61968967.cms |url-status=live }}</ref> with plans to build more.<ref>{{cite news |url=http://www.hindustantimes.com/India-news/NewDelhi/India-s-breeder-reactor-to-be-commissioned-in-2013/Article1-814183.aspx |title=India's breeder reactor to be commissioned in 2013 |newspaper=Hindustan Times |access-date=2013-06-14 |archive-url=https://web.archive.org/web/20130426141852/http://www.hindustantimes.com/India-news/NewDelhi/India-s-breeder-reactor-to-be-commissioned-in-2013/Article1-814183.aspx |archive-date=2013-04-26 |url-status=dead }}</ref> Another alternative to fast-neutron breeders are thermal-neutron breeder reactors that use uranium-233 bred from [[thorium]] as fission fuel in the [[thorium fuel cycle]].<ref name="wna-thorium" /> Thorium is about 3.5 times more common than uranium in the Earth's crust, and has different geographic characteristics.<ref name="wna-thorium">{{cite web |url=http://www.world-nuclear.org/info/inf62.html |title=Thorium |access-date=2006-11-09 |publisher=World Nuclear Association |year=2006 |website=Information and Issue Briefs |archive-date=2013-02-16 |archive-url=https://web.archive.org/web/20130216102005/http://www.world-nuclear.org/info/inf62.html |url-status=dead }}</ref> [[India's three-stage nuclear power programme]] features the use of a thorium fuel cycle in the third stage, as it has abundant thorium reserves but little uranium.<ref name="wna-thorium" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Nuclear power
(section)
Add topic