Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Modular arithmetic
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Integers modulo ''m'' == In the context of this paragraph, the modulus {{math|''m''}} is almost always taken as positive. The set of all [[#Congruence classes|congruence classes]] modulo {{math|''m''}} is a [[ring (mathematics)|ring]] called the '''ring of integers modulo {{math|''m''}}''', and is denoted <math display=inline>\mathbb{Z}/m\mathbb{Z}</math>, <math>\mathbb{Z}/m</math>, or <math>\mathbb{Z}_m</math>.<ref>{{Cite web|date=2013-11-16|title=2.3: Integers Modulo n|url=https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Book%3A_Introduction_to_Algebraic_Structures_(Denton)/02%3A_Groups_I/2.03%3A_Integers_Modulo_n|access-date=2020-08-12|website=Mathematics LibreTexts|language=en|archive-date=2021-04-19|archive-url=https://web.archive.org/web/20210419035455/https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Book%3A_Introduction_to_Algebraic_Structures_(Denton)/02%3A_Groups_I/2.03%3A_Integers_Modulo_n|url-status=live}}</ref> The ring <math>\mathbb{Z}/m\mathbb{Z}</math> is fundamental to various branches of mathematics (see ''{{section link|#Applications}}'' below). (In some parts of [[number theory]] the notation <math>\mathbb{Z}_m</math> is avoided because it can be confused with the set of [[P-adic integer|{{math|''m''}}-adic integers]].) For {{math|''m'' > 0}} one has : <math>\mathbb{Z}/m\mathbb{Z} = \left\{ \overline{a}_m \mid a \in \mathbb{Z}\right\} = \left\{ \overline{0}_m, \overline{1}_m, \overline{2}_m,\ldots, \overline{m{-}1}_m \right\}.</math> When {{math|1=''m'' = 1}}, <math>\mathbb{Z}/m\mathbb{Z}</math> is the [[zero ring]]; when {{math|1=''m'' = 0}}, <math>\mathbb{Z}/m\mathbb{Z}</math> is not an [[empty set]]; rather, it is [[isomorphism|isomorphic]] to <math>\mathbb{Z}</math>, since {{math|1={{overline|''a''}}<sub>0</sub> = {{mset|''a''}}}}. Addition, subtraction, and multiplication are defined on <math>\mathbb{Z}/m\mathbb{Z}</math> by the following rules: * <math>\overline{a}_m + \overline{b}_m = \overline{(a + b)}_m</math> * <math>\overline{a}_m - \overline{b}_m = \overline{(a - b)}_m</math> * <math>\overline{a}_m \overline{b}_m = \overline{(a b)}_m.</math> The properties given before imply that, with these operations, <math>\mathbb{Z}/m\mathbb{Z}</math> is a [[commutative ring]]. For example, in the ring <math>\mathbb{Z}/24\mathbb{Z}</math>, one has : <math>\overline{12}_{24} + \overline{21}_{24} = \overline{33}_{24}= \overline{9}_{24}</math> as in the arithmetic for the 24-hour clock. The notation <math>\mathbb{Z}/m\mathbb{Z}</math> is used because this ring is the [[quotient ring]] of <math>\mathbb{Z}</math> by the [[ideal (ring theory)|ideal]] <math>m\mathbb{Z}</math>, the set formed by all multiples of {{math|''m''}}, i.e., all numbers {{math|''k m''}} with <math>k\in\mathbb{Z}.</math> Under addition, <math>\mathbb Z/m\Z</math> is a [[cyclic group]]. All finite cyclic groups are isomorphic with <math>\mathbb Z/m\mathbb Z</math> for some {{mvar|m}}.<ref>Sengadir T., {{Google books|id=nglisrt9IewC|page=293|text=Zn is generated by 1|title=Discrete Mathematics and Combinatorics}}</ref> The ring of integers modulo {{math|''m''}} is a [[field (mathematics)|field]], i.e., every nonzero element has a [[Modular multiplicative inverse|multiplicative inverse]], if and only if {{math|''m''}} is [[Prime number|prime]]. If {{math|1=''m'' = ''p''{{i sup|''k''}}}} is a [[prime power]] with {{math|''k'' > 1}}, there exists a unique (up to isomorphism) finite field <math>\mathrm{GF}(m) =\mathbb F_m</math> with {{math|''m''}} elements, which is ''not'' isomorphic to <math>\mathbb Z/m\mathbb Z</math>, which fails to be a field because it has [[zero-divisor]]s. If {{math|''m'' > 1}}, <math>(\mathbb Z/m\mathbb Z)^\times</math> denotes the [[multiplicative group of integers modulo n|multiplicative group of the integers modulo {{math|''m''}}]] that are invertible. It consists of the congruence classes {{math|{{overline|''a''}}{{sub|''m''}}}}, where {{math|''a''}} [[coprime integers|is coprime]] to {{math|''m''}}; these are precisely the classes possessing a multiplicative inverse. They form an [[abelian group]] under multiplication; its order is {{math|''Ο''(''m'')}}, where {{mvar|Ο}} is [[Euler's totient function]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Modular arithmetic
(section)
Add topic