Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Maximum likelihood estimation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relation to Bayesian inference === A maximum likelihood estimator coincides with the [[Maximum a posteriori|most probable]] [[Bayesian estimator]] given a [[Uniform distribution (continuous)|uniform]] [[prior probability|prior distribution]] on the [[parameter space|parameters]]. Indeed, the [[maximum a posteriori estimate]] is the parameter {{mvar|θ}} that maximizes the probability of {{mvar|θ}} given the data, given by Bayes' theorem: <math display="block"> \operatorname{\mathbb P}(\theta\mid x_1,x_2,\ldots,x_n) = \frac{f(x_1,x_2,\ldots,x_n\mid\theta)\operatorname{\mathbb P}(\theta)}{\operatorname{\mathbb P}(x_1,x_2,\ldots,x_n)} </math> where <math>\operatorname{\mathbb P}(\theta)</math> is the prior distribution for the parameter {{mvar|θ}} and where <math>\operatorname{\mathbb P}(x_1,x_2,\ldots,x_n)</math> is the probability of the data averaged over all parameters. Since the denominator is independent of {{mvar|θ}}, the Bayesian estimator is obtained by maximizing <math>f(x_1,x_2,\ldots,x_n\mid\theta)\operatorname{\mathbb P}(\theta)</math> with respect to {{mvar|θ}}. If we further assume that the prior <math>\operatorname{\mathbb P}(\theta)</math> is a uniform distribution, the Bayesian estimator is obtained by maximizing the likelihood function <math>f(x_1,x_2,\ldots,x_n\mid\theta)</math>. Thus the Bayesian estimator coincides with the maximum likelihood estimator for a uniform prior distribution <math>\operatorname{\mathbb P}(\theta)</math>. ==== Application of maximum-likelihood estimation in Bayes decision theory ==== In many practical applications in [[machine learning]], maximum-likelihood estimation is used as the model for parameter estimation. The Bayesian Decision theory is about designing a classifier that minimizes total expected risk, especially, when the costs (the loss function) associated with different decisions are equal, the classifier is minimizing the error over the whole distribution.<ref>{{cite web |last=Christensen |first=Henrikt I. |title=Pattern Recognition |publisher=Georgia Tech |series=Bayesian Decision Theory - CS 7616 |url=https://www.cc.gatech.edu/~hic/CS7616/pdf/lecture2.pdf |type=lecture}}</ref> Thus, the Bayes Decision Rule is stated as :"decide <math>\;w_1\;</math> if <math>~\operatorname{\mathbb P}(w_1|x) \; > \; \operatorname{\mathbb P}(w_2|x)~;~</math> otherwise decide <math>\;w_2\;</math>" where <math>\;w_1\,, w_2\;</math> are predictions of different classes. From a perspective of minimizing error, it can also be stated as <math display="block">w = \underset{ w }{\operatorname{arg\;max}} \; \int_{-\infty}^\infty \operatorname{\mathbb P}(\text{ error}\mid x)\operatorname{\mathbb P}(x)\,\operatorname{d}x~</math> where <math display="block">\operatorname{\mathbb P}(\text{ error}\mid x) = \operatorname{\mathbb P}(w_1\mid x)~</math> if we decide <math>\;w_2\;</math> and <math>\;\operatorname{\mathbb P}(\text{ error}\mid x) = \operatorname{\mathbb P}(w_2\mid x)\;</math> if we decide <math>\;w_1\;.</math> By applying [[Bayes' theorem]] <math display="block">\operatorname{\mathbb P}(w_i \mid x) = \frac{\operatorname{\mathbb P}(x \mid w_i) \operatorname{\mathbb P}(w_i)}{\operatorname{\mathbb P}(x)}</math>, and if we further assume the zero-or-one loss function, which is a same loss for all errors, the Bayes Decision rule can be reformulated as: <math display="block">h_\text{Bayes} = \underset{ w }{\operatorname{arg\;max}} \, \bigl[\, \operatorname{\mathbb P}(x\mid w)\,\operatorname{\mathbb P}(w) \,\bigr]\;,</math> where <math>h_\text{Bayes}</math> is the prediction and <math>\;\operatorname{\mathbb P}(w)\;</math> is the [[prior probability]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Maximum likelihood estimation
(section)
Add topic