Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
M. C. Escher
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Infinity and hyperbolic geometry === [[File:Schattschneider Reconstruction of Escher's Coxeter Diagram.jpg|thumb|left|upright=1.4<!--size for very low image-->|[[Doris Schattschneider]]'s reconstruction of the diagram of hyperbolic tiling sent by Escher to the mathematician [[Harold Scott MacDonald Coxeter|Donald Coxeter]]<ref name=MathSide />]] In 1954 the International Congress of Mathematicians met in Amsterdam, and N. G. de Bruin organised a display of Escher's work at the Stedelijk Museum for the participants. Both Roger Penrose and [[Harold Scott MacDonald Coxeter|H. S. M. Coxeter]] were deeply impressed with Escher's intuitive grasp of mathematics. Inspired by ''Relativity'', Penrose devised his [[Penrose tribar|tribar]], and his father, Lionel Penrose, devised an endless staircase. Roger Penrose sent sketches of both objects to Escher, and the cycle of invention was closed when Escher then created the [[perpetual motion]] machine of ''Waterfall'' and the endless march of the monk-figures of ''Ascending and Descending''.<ref name=MathSide /> In 1957 Coxeter obtained Escher's permission to use two of his drawings in his paper "Crystal symmetry and its generalizations".<ref name=MathSide /><ref>{{cite journal |last=Coxeter |first=H. S. M. |title=Crystal symmetry and its generalizations |journal=A Symposium on Symmetry, Transactions of the Royal Society of Canada |volume=51 |issue=3, section 3 |date=June 1957 |pages=1β13}}</ref> He sent Escher a copy of the paper; Escher recorded that Coxeter's figure of a hyperbolic tessellation "gave me quite a shock": the infinite regular repetition of the tiles in the [[Models of the hyperbolic plane|hyperbolic plane]], growing rapidly smaller towards the edge of the circle, was precisely what he wanted to allow him to represent [[infinity]] on a two-dimensional plane.<ref name=MathSide /><ref>{{cite web |last=Malkevitch |first=Joseph |title=Mathematics and Art. 4. Mathematical artists and artist mathematicians |url=https://www.ams.org/samplings/feature-column/fcarc-art4 |publisher=American Mathematical Society |access-date=1 September 2015}}</ref> Escher carefully studied Coxeter's figure, marking it up to analyse the successively smaller circles{{efn|Schattschneider notes that Coxeter observed in March 1964 that the white arcs in ''[[Circle Limit III]]'' "were not, as he and others had assumed, badly rendered hyperbolic lines but rather were branches of equidistant curves."<ref name=MathSide />}} with which (he deduced) it had been constructed. He then constructed a diagram, which he sent to Coxeter, showing his analysis; Coxeter confirmed it was correct, but disappointed Escher with his highly technical reply. All the same, Escher persisted with [[hyperbolic tiling]], which he called "Coxetering".<ref name=MathSide /> Among the results were the series of wood engravings ''Circle Limit IβIV''.{{efn|See [[Circle Limit III]] article for image.}}<ref name=MathSide /> In 1959, Coxeter published his finding that these works were extraordinarily accurate: "Escher got it absolutely right to the millimeter".<ref name=StAndrewsCoxeter>{{MacTutor|title=Maurits Cornelius Escher|id=Escher|mode=cs1}} which cites {{cite book |author=Schattschneider, D. |contribution=Escher: A mathematician in spite of himself |title=The Lighter Side of Mathematics |editor1=Guy, R. K. |editor2=Woodrow, R. E. |publisher=The Mathematical Association of America | location=Washington |year=1994 |pages=91β100}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
M. C. Escher
(section)
Add topic