Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
List of logarithmic identities
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Changing the base == To state the change of base logarithm formula formally: <math display="block">\forall a, b \in \mathbb{R}_+, a, b \neq 1, \forall x \in \mathbb{R}_+, \log_b(x) = \frac{\log_a(x)}{\log_a(b)}</math> This identity is useful to evaluate logarithms on calculators. For instance, most calculators have buttons for [[Natural logarithm|ln]] and for [[Common logarithm|log<sub>10</sub>]], but not all calculators have buttons for the logarithm of an arbitrary base. === Proof/derivation === Let <math>a, b \in \mathbb{R}_+</math>, where <math>a, b \neq 1</math> Let <math>x \in \mathbb{R}_+</math>. Here, <math>a</math> and <math>b</math> are the two bases we will be using for the logarithms. They cannot be 1, because the logarithm function is not well defined for the base of 1.{{Citation needed|date=July 2022}} The number <math>x</math> will be what the logarithm is evaluating, so it must be a positive number. Since we will be dealing with the term <math>\log_b(x)</math> quite frequently, we define it as a new variable: Let <math>m = \log_b(x)</math>. To more easily manipulate the expression, it can be rewritten as an exponential. <math display="block">b^m = x </math> Applying <math>\log_a</math> to both sides of the equality, <math display="block">\log_a(b^m) = \log_a(x) </math> Now, using the logarithm of a power property, which states that <math>\log_a(b^m) = m\log_a(b)</math>, <math display="block">m\log_a(b) = \log_a(x)</math> Isolating <math>m</math>, we get the following: <math display="block">m = \frac{\log_a(x)}{\log_a(b)}</math> Resubstituting <math>m = \log_b(x)</math> back into the equation, <math display="block">\log_b(x) = \frac{\log_a(x)}{\log_a(b)}</math> This completes the proof that <math>\log_b(x) = \frac{\log_a(x)}{\log_a(b)}</math>. This formula has several consequences: <math display="block"> \log_b a = \frac 1 {\log_a b} </math> <math display="block"> \log_{b^n} a = {\log_b a \over n} </math> <math display="block"> \log_{b} a = \log_b e \cdot \log_e a = \log_b e \cdot \ln a </math> <math display="block"> b^{\log_a d} = d^{\log_a b} </math> <math display="block"> -\log_b a = \log_b \left({1 \over a}\right) = \log_{1/b} a</math> <!-- extra blank space between two lines of "displayed" [[TeX]] for legibility --> <math display="block"> \log_{b_1}a_1 \,\cdots\, \log_{b_n}a_n = \log_{b_{\pi(1)}}a_1\, \cdots\, \log_{b_{\pi(n)}}a_n, </math> where <math display="inline">\pi</math> is any [[permutation]] of the subscripts {{math|1, ..., ''n''}}. For example <math display="block"> \log_b w\cdot \log_a x \cdot \log_d c \cdot \log_d z = \log_d w \cdot \log_b x \cdot \log_a c \cdot \log_d z. </math> === Summation/subtraction === The following summation/subtraction rule is especially useful in [[probability theory]] when one is dealing with a sum of log-probabilities: {| |<math>\log_b (a+c) = \log_b a + \log_b \left(1 + \frac{c}{a}\right)</math> |because |<math>\left(a + c \right) = a \times \left(1 + \frac{c}{a} \right)</math> |- |<math>\log_b (a-c) = \log_b a + \log_b \left(1 - \frac{c}{a}\right)</math> |because |<math>\left(a - c \right) = a \times \left(1 - \frac{c}{a} \right)</math> |} Note that the subtraction identity is not defined if <math>a=c</math>, since the logarithm of zero is not defined. Also note that, when programming, <math>a</math> and <math>c</math> may have to be switched on the right hand side of the equations if <math>c \gg a</math> to avoid losing the "1 +" due to rounding errors. Many programming languages have a specific <code>log1p(x)</code> function that calculates <math>\log_e (1+x)</math> without underflow (when <math>x</math> is small). More generally: <math display="block">\log _b \sum_{i=0}^N a_i = \log_b a_0 + \log_b \left( 1+\sum_{i=1}^N \frac{a_i}{a_0} \right) = \log _b a_0 + \log_b \left( 1+\sum_{i=1}^N b^{\left( \log_b a_i - \log _b a_0 \right)} \right)</math> === Exponents === A useful identity involving exponents: <math display="block"> x^{\frac{\log(\log(x))}{\log(x)}} = \log(x)</math> or more universally: <math display="block"> x^{\frac{\log(a)}{\log(x)}} = a</math> === Other/resulting identities === <math display="block"> \frac{1}{\frac{1}{\log_x(a)} + \frac{1}{\log_y(a)}} = \log_{xy}(a)</math> <math display="block"> \frac{1}{\frac{1}{\log_x(a)}-\frac{1}{\log_y(a)}} = \log_{\frac{x}{y}}(a)</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
List of logarithmic identities
(section)
Add topic