Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Linear independence
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Vectors in R<sup>2</sup> === '''Three vectors:''' Consider the set of vectors <math>\mathbf{v}_1 = (1, 1),</math> <math>\mathbf{v}_2 = (-3, 2),</math> and <math>\mathbf{v}_3 = (2, 4),</math> then the condition for linear dependence seeks a set of non-zero scalars, such that :<math>a_1 \begin{bmatrix} 1\\1\end{bmatrix} + a_2 \begin{bmatrix} -3\\2\end{bmatrix} + a_3 \begin{bmatrix} 2\\4\end{bmatrix} =\begin{bmatrix} 0\\0\end{bmatrix},</math> or :<math>\begin{bmatrix} 1 & -3 & 2 \\ 1 & 2 & 4 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \\ a_3 \end{bmatrix}= \begin{bmatrix} 0\\0\end{bmatrix}.</math> [[Row reduction|Row reduce]] this matrix equation by subtracting the first row from the second to obtain, :<math>\begin{bmatrix} 1 & -3 & 2 \\ 0 & 5 & 2 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \\ a_3 \end{bmatrix}= \begin{bmatrix} 0\\0\end{bmatrix}.</math> Continue the row reduction by (i) dividing the second row by 5, and then (ii) multiplying by 3 and adding to the first row, that is :<math>\begin{bmatrix} 1 & 0 & 16/5 \\ 0 & 1 & 2/5 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \\ a_3 \end{bmatrix}= \begin{bmatrix} 0\\0\end{bmatrix}.</math> Rearranging this equation allows us to obtain :<math>\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \end{bmatrix}= \begin{bmatrix} a_1\\ a_2 \end{bmatrix}=-a_3\begin{bmatrix} 16/5\\2/5\end{bmatrix}.</math> which shows that non-zero ''a''<sub>''i''</sub> exist such that <math>\mathbf{v}_3 = (2, 4)</math> can be defined in terms of <math>\mathbf{v}_1 = (1, 1)</math> and <math>\mathbf{v}_2 = (-3, 2).</math> Thus, the three vectors are linearly dependent. '''Two vectors:''' Now consider the linear dependence of the two vectors <math>\mathbf{v}_1 = (1, 1)</math> and <math>\mathbf{v}_2 = (-3, 2),</math> and check, :<math>a_1 \begin{bmatrix} 1\\1\end{bmatrix} + a_2 \begin{bmatrix} -3\\2\end{bmatrix} =\begin{bmatrix} 0\\0\end{bmatrix},</math> or :<math>\begin{bmatrix} 1 & -3 \\ 1 & 2 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \end{bmatrix}= \begin{bmatrix} 0\\0\end{bmatrix}.</math> The same row reduction presented above yields, :<math>\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} a_1\\ a_2 \end{bmatrix}= \begin{bmatrix} 0\\0\end{bmatrix}.</math> This shows that <math>a_i = 0,</math> which means that the vectors <math>\mathbf{v}_1 = (1, 1)</math> and <math>\mathbf{v}_2 = (-3, 2)</math> are linearly independent.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Linear independence
(section)
Add topic