Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kernel (algebra)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Group homomorphisms === Let ''G'' be the [[cyclic group]] on 6 elements {{nowrap|{{mset|0, 1, 2, 3, 4, 5}}}} with [[modular arithmetic|modular addition]], ''H'' be the cyclic on 2 elements {{nowrap|{{mset|0, 1}}}} with modular addition, and ''f'' the homomorphism that maps each element ''g'' in ''G'' to the element ''g'' modulo 2 in ''H''. Then {{nowrap|ker ''f'' {{=}} {0, 2, 4} }}, since all these elements are mapped to 0<sub>''H''</sub>. The quotient group {{nowrap|''G'' / (ker ''f'')}} has two elements: {{nowrap|{{mset|0, 2, 4}}}} and {{nowrap|{{mset|1, 3, 5}}}}. It is indeed isomorphic to ''H''. Given a [[isomorphism]] <math>\varphi: G \to H</math>, one has <math>\ker \varphi = 1</math>.<ref name=":0" /> On the other hand, if this mapping is merely a homomorphism where ''H'' is the trivial group, then <math>\varphi(g)=1</math> for all <math>g \in G</math>, so thus <math>\ker \varphi = G</math>.<ref name=":0" /> Let <math>\varphi: \mathbb{R}^2 \to \mathbb{R}</math> be the map defined as <math>\varphi((x,y)) = x</math>. Then this is a homomorphism with the kernel consisting precisely the points of the form <math>(0,y)</math>. This mapping is considered the "projection onto the x-axis." <ref name=":0" /> A similar phenomenon occurs with the mapping <math>f: (\mathbb{R}^\times)^2 \to \mathbb{R}^\times </math> defined as <math>f(a,b)=b</math>, where the kernel is the points of the form <math>(a,1)</math><ref name=":2" /> For a non-abelian example, let <math>Q_8</math> denote the [[Quaternion group]], and <math>V_4</math> the [[Klein four-group|Klein 4-group]]. Define a mapping <math>\varphi: Q_8 \to V_4</math> to be: : <math>\varphi(\pm1)=1</math> : <math>\varphi(\pm i)=a</math> : <math>\varphi(\pm j)=b</math> : <math>\varphi(\pm k)=c</math> Then this mapping is a homomorphism where <math>\ker \varphi = \{ \pm 1 \} </math>.<ref name=":0" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kernel (algebra)
(section)
Add topic