Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Homological algebra
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Abelian categories=== {{Main|Abelian category}} In [[mathematics]], an '''abelian category''' is a [[category (category theory)|category]] in which [[morphism]]s and objects can be added and in which [[kernel (category theory)|kernel]]s and [[cokernel]]s exist and have desirable properties. The motivating prototype example of an abelian category is the [[category of abelian groups]], '''Ab'''. The theory originated in a tentative attempt to unify several [[cohomology theory|cohomology theories]] by [[Alexander Grothendieck]]. Abelian categories are very ''stable'' categories, for example they are [[regular category|regular]] and they satisfy the [[snake lemma]]. The class of Abelian categories is closed under several categorical constructions, for example, the category of [[chain complex]]es of an Abelian category, or the category of [[functor]]s from a [[small category]] to an Abelian category are Abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in [[algebraic geometry]], [[cohomology]] and pure [[category theory]]. Abelian categories are named after [[Niels Henrik Abel]]. More concretely, a category is '''abelian''' if *it has a [[zero object]], *it has all binary [[Product (category theory)|products]] and binary [[coproduct]]s, and *it has all [[kernel (category theory)|kernels]] and [[cokernel]]s. *all [[monomorphism]]s and [[epimorphism]]s are [[normal morphism|normal]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Homological algebra
(section)
Add topic