Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
High-performance liquid chromatography
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Ion-exchange chromatography=== {{further|Ion-exchange chromatography}} '''Ion-exchange chromatography''' ('''IEC''') or '''ion chromatography''' ('''IC''')<ref>{{Cite book |last1=Fritz |first1=James S. |url=https://onlinelibrary.wiley.com/doi/book/10.1002/9783527613243 |title=Ion Chromatography |last2=Gjerde |first2=Douglas T. |date=2000-04-25 |publisher=Wiley |isbn=978-3-527-29914-0 |edition=1 |language=en |doi=10.1002/9783527613243}}</ref> is an analytical technique for the separation and determination of ionic solutes in aqueous samples from environmental and industrial origins such as metal industry, industrial waste water, in biological systems, pharmaceutical samples, food, etc. Retention is based on the attraction between solute ions and charged sites bound to the stationary phase. Solute ions charged the same as the ions on the column are repulsed and elute without retention, while solute ions charged oppositely to the charged sites of the column are retained on it. Solute ions that are retained on the column can be eluted from it by changing the mobile phase composition, such as increasing its salt concentration and pH or increasing the column temperature, etc. Types of ion exchangers include [[polystyrene]] [[resin]]s, [[cellulose]] and [[dextran]] ion exchangers (gels), and controlled-pore glass or porous [[silica gel]]. Polystyrene resins allow cross linkage, which increases the stability of the chain. Higher cross linkage reduces swerving, which increases the equilibration time and ultimately improves selectivity. Cellulose and dextran ion exchangers possess larger pore sizes and low charge densities making them suitable for protein separation. In general, ion exchangers favor the binding of ions of higher charge and smaller radius. An increase in [[counter ion]] (with respect to the functional groups in resins) concentration reduces the retention time, as it creates a strong competition with the solute ions. A decrease in pH reduces the retention time in cation exchange while an increase in pH reduces the retention time in anion exchange. By lowering the pH of the solvent in a cation exchange column, for instance, more hydrogen ions are available to compete for positions on the anionic stationary phase, thereby eluting weakly bound cations. This form of chromatography is widely used in the following applications: water purification, preconcentration of trace components, ligand-exchange chromatography, ion-exchange chromatography of proteins, high-pH [[anion-exchange chromatography]] of carbohydrates and oligosaccharides, and others.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
High-performance liquid chromatography
(section)
Add topic