Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Golomb coding
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications == [[File:Golomb coded Rice Algorithm experiment Compression Ratios.png|thumb|upright 1.5|Golomb-coded Rice algorithm experiment compression ratios]] Numerous signal codecs use a Rice code for [[prediction]] residues. In predictive algorithms, such residues tend to fall into a two-sided [[geometric distribution]], with small residues being more frequent than large residues, and the Rice code closely approximates the Huffman code for such a distribution without the overhead of having to transmit the Huffman table. One signal that does not match a geometric distribution is a [[sine wave]], because the differential residues create a sinusoidal signal whose values are not creating a geometric distribution (the highest and lowest residue values have similar high frequency of occurrences, only the median positive and negative residues occur less often). Several lossless [[audio data compression|audio codecs]], such as [[Shorten (file format)|Shorten]],<ref>{{Cite web |url=http://www.etree.org/shnutils/shorten/support/doc/shorten.txt |title=man shorten |access-date=2008-12-07 |archive-url=https://web.archive.org/web/20140130053525/http://www.etree.org/shnutils/shorten/support/doc/shorten.txt |archive-date=2014-01-30 |url-status=dead }}</ref> [[FLAC]],<ref>{{Cite web|url=https://xiph.org/flac/documentation_format_overview.html|title=FLAC - Format overview|website=xiph.org}}</ref> [[Apple Lossless]], and [[MPEG-4 ALS]], use a Rice code after the [[Linear predictive coding|linear prediction step]] (called "adaptive FIR filter" in Apple Lossless). Rice coding is also used in the [[FELICS]] lossless image codec. The Golomb–Rice coder is used in the entropy coding stage of [[Rice algorithm]] based ''lossless image codecs''. One such experiment yields the compression ratio graph shown. The [[Lossless JPEG#JPEG-LS|JPEG-LS]] scheme uses Rice–Golomb to encode the prediction residuals. The adaptive version of Golomb–Rice coding mentioned above, the RLGR encoder [https://www.microsoft.com/en-us/research/publication/adaptive-run-length-golomb-rice-encoding-of-quantized-generalized-gaussian-sources-with-unknown-statistics/],is used for encoding screen content in virtual machines in the [https://msdn.microsoft.com/en-us/library/ff635165.aspx RemoteFX] component of the Microsoft Remote Desktop Protocol.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Golomb coding
(section)
Add topic