Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Georg Cantor
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Continuum hypothesis==== {{Main|Continuum hypothesis}} Cantor was the first to formulate what later came to be known as the [[continuum hypothesis]] or CH: there exists no set whose power is greater than that of the naturals and less than that of the reals (or equivalently, the cardinality of the reals is ''exactly'' aleph-one, rather than just ''at least'' aleph-one). Cantor believed the continuum hypothesis to be true and tried for many years to [[mathematical proof|prove]] it, in vain. His inability to prove the continuum hypothesis caused him considerable anxiety.<ref name="daub280" /> The difficulty Cantor had in proving the continuum hypothesis has been underscored by later developments in the field of mathematics: a 1940 result by [[Kurt Gödel]] and a 1963 one by [[Paul Cohen (mathematician)|Paul Cohen]] together imply that the continuum hypothesis can be neither proved nor disproved using standard [[Zermelo–Fraenkel set theory]] plus the [[axiom of choice]] (the combination referred to as "[[ZFC]]").<ref>Some mathematicians consider these results to have settled the issue, and, at most, allow that it is possible to examine the formal consequences of CH or of its negation, or of axioms that imply one of those. Others continue to look for "natural" or "plausible" axioms that, when added to ZFC, will permit either a proof or refutation of CH, or even for direct evidence for or against CH itself; among the most prominent of these is [[W. Hugh Woodin]]. One of Gödel's last papers argues that the CH is false, and the continuum has cardinality Aleph-2.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Georg Cantor
(section)
Add topic