Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gaussian quadrature
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Recurrence relation ==== Orthogonal polynomials <math>p_r</math> with <math>(p_r, p_s) = 0</math> for <math>r \ne s</math> for a scalar product <math>(\cdot , \cdot)</math>, degree <math>(p_r) = r</math> and leading coefficient one (i.e. [[monic polynomial|monic]] orthogonal polynomials) satisfy the recurrence relation <math display="block">p_{r+1}(x) = (x - a_{r,r}) p_r(x) - a_{r,r-1} p_{r-1}(x) \cdots - a_{r,0}p_0(x)</math> and scalar product defined <math display="block">(f(x),g(x))=\int_a^b\omega(x)f(x)g(x)dx</math> for <math>r = 0, 1, \ldots, n - 1</math> where {{mvar|n}} is the maximal degree which can be taken to be infinity, and where <math display="inline">a_{r,s} = \frac{\left(xp_r, p_s\right)}{\left(p_s, p_s\right)}</math>. First of all, the polynomials defined by the recurrence relation starting with <math>p_0(x) = 1</math> have leading coefficient one and correct degree. Given the starting point by <math>p_0</math>, the orthogonality of <math>p_r</math> can be shown by induction. For <math>r = s = 0</math> one has <math display="block">(p_1,p_0) = (x-a_{0,0}) (p_0,p_0) = (xp_0,p_0) - a_{0,0}(p_0,p_0) = (xp_0,p_0) - (xp_0,p_0) = 0.</math> Now if <math>p_0, p_1, \ldots, p_r</math> are orthogonal, then also <math>p_{r+1}</math>, because in <math display="block">(p_{r+1}, p_s) = (xp_r, p_s) - a_{r,r}(p_r, p_s) - a_{r,r-1}(p_{r-1}, p_s)\cdots - a_{r,0}(p_0, p_s)</math> all scalar products vanish except for the first one and the one where <math>p_s</math> meets the same orthogonal polynomial. Therefore, <math display="block">(p_{r+1},p_s) = (xp_r,p_s) - a_{r,s}(p_s,p_s) = (xp_r,p_s)-(xp_r,p_s) = 0.</math> However, if the scalar product satisfies <math>(xf, g) = (f,xg)</math> (which is the case for Gaussian quadrature), the recurrence relation reduces to a three-term recurrence relation: For <math>s < r - 1, xp_s</math> is a polynomial of degree less than or equal to {{math|''r'' β 1}}. On the other hand, <math>p_r</math> is orthogonal to every polynomial of degree less than or equal to {{math|''r'' β 1}}. Therefore, one has <math>(xp_r, p_s) = (p_r, xp_s) = 0</math> and <math>a_{r,s} = 0</math> for {{math|''s'' < ''r'' β 1}}. The recurrence relation then simplifies to <math display="block">p_{r+1}(x) = (x-a_{r,r}) p_r(x) - a_{r,r-1} p_{r-1}(x)</math> or <math display="block">p_{r+1}(x) = (x-a_r) p_r(x) - b_r p_{r-1}(x)</math> (with the convention <math>p_{-1}(x) \equiv 0</math>) where <math display="block">a_r := \frac{(xp_r,p_r)}{(p_r,p_r)}, \qquad b_r := \frac{(xp_r,p_{r-1})}{(p_{r-1},p_{r-1})} = \frac{(p_r,p_r)}{(p_{r-1},p_{r-1})}</math> (the last because of <math>(xp_r, p_{r-1}) = (p_r, xp_{r-1}) = (p_r, p_r)</math>, since <math>xp_{r-1}</math> differs from <math>p_r</math> by a degree less than {{mvar|r}}).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gaussian quadrature
(section)
Add topic