Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gaussian integer
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples=== *There are exactly two residue classes for the modulus {{math|1 + ''i''}}, namely {{math|{{overline|0}} {{=}} {0, ±2, ±4,…,±1 ± ''i'', ±3 ± ''i'',…}{{void}}}} (all multiples of {{math|1 + ''i''}}), and {{math|{{overline|1}} {{=}} {±1, ±3, ±5,…, ±''i'', ±2 ± ''i'',…}{{void}}}}, which form a checkerboard pattern in the complex plane. These two classes form thus a ring with two elements, which is, in fact, a [[field (mathematics)|field]], the unique (up to an isomorphism) field with two elements, and may thus be identified with the [[modular arithmetic|integers modulo 2]]. These two classes may be considered as a generalization of the partition of integers into even and odd integers. Thus one may speak of ''even'' and ''odd'' Gaussian integers (Gauss divided further even Gaussian integers into ''even'', that is divisible by 2, and ''half-even''). *For the modulus 2 there are four residue classes, namely {{math|{{overline|0}}, {{overline|1}}, {{overline|''i''}}, {{overline|1 + ''i''}}}}. These form a ring with four elements, in which {{math|1=''x'' = −''x''}} for every {{math|''x''}}. Thus this ring is not [[isomorphic]] with the ring of integers modulo 4, another ring with four elements. One has {{math|{{overline|1 + ''i''}}<sup>2</sup> {{=}} {{overline|0}}}}, and thus this ring is not the [[finite field]] with four elements, nor the [[direct product]] of two copies of the ring of integers modulo 2. *For the modulus {{math|2 + 2i {{=}} (''i'' − 1)<sup>3</sup>}} there are eight residue classes, namely {{math|{{overline|0}}, {{overline|±1}}, {{overline|±''i''}}, {{overline|1 ± ''i''}}, {{overline|2}}}}, whereof four contain only even Gaussian integers and four contain only odd Gaussian integers.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gaussian integer
(section)
Add topic