Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Expander graph
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Ramanujan graphs=== {{main|Ramanujan graph}} By a [[Alon–Boppana bound|theorem of Alon and Boppana]], all sufficiently large {{mvar|d}}-regular graphs satisfy <math>\lambda_2 \ge 2\sqrt{d-1} - o(1)</math>, where {{math|''λ''{{sub|2}}}} is the second largest eigenvalue in absolute value.<ref>Theorem 2.7 of {{harvtxt|Hoory|Linial|Wigderson|2006}}</ref> As a direct consequence, we know that for every fixed {{mvar|d}} and <math>\lambda< 2 \sqrt{d-1}</math> , there are only finitely many {{math|(''n'', ''d'', ''λ'')}}-graphs. [[Ramanujan graph]]s are {{mvar|d}}-regular graphs for which this bound is tight, satisfying <ref>Definition 5.11 of {{harvtxt|Hoory|Linial|Wigderson|2006}}</ref> :<math>\lambda = \max_{|\lambda_i| < d} |\lambda_i| \le 2\sqrt{d-1}.</math> Hence Ramanujan graphs have an asymptotically smallest possible value of {{math|''λ''{{sub|2}}}}. This makes them excellent spectral expanders. [[Alexander Lubotzky|Lubotzky]], Phillips, and [[Peter Sarnak|Sarnak]] (1988), Margulis (1988), and Morgenstern (1994) show how Ramanujan graphs can be constructed explicitly.<ref>Theorem 5.12 of {{harvtxt|Hoory|Linial|Wigderson|2006}}</ref> In 1985, Alon, conjectured that most {{mvar|d}}-regular graphs on {{mvar|n}} vertices, for sufficiently large {{mvar|n}}, are almost Ramanujan.<ref>{{Cite journal|last=Alon|first=Noga|date=1986-06-01|title=Eigenvalues and expanders|journal=Combinatorica|language=en|volume=6|issue=2|pages=83–96|doi=10.1007/BF02579166|s2cid=41083612|issn=1439-6912}}</ref> That is, for {{math|''ε'' > 0}}, they satisfy :<math>\lambda \le 2\sqrt{d-1}+\varepsilon</math>. In 2003, Joel Friedman both proved the conjecture and specified what is meant by "most {{mvar|d}}-regular graphs" by showing that [[Random regular graph|random {{mvar|d}}-regular graphs]] have <math>\lambda \le 2\sqrt{d-1}+\varepsilon</math> for every {{math|''ε'' > 0}} with probability {{math|1 – ''O''(''n''{{sup|-τ}})}}, where<ref>{{cite arXiv|last=Friedman|first=Joel|date=2004-05-05|title=A proof of Alon's second eigenvalue conjecture and related problems|eprint=cs/0405020}}</ref><ref>Theorem 7.10 of {{harvtxt|Hoory|Linial|Wigderson|2006}}</ref> :<math>\tau = \left\lceil\frac{\sqrt{d-1} +1}{2} \right\rceil.</math> A simpler proof of a slightly weaker result was given by Puder.<ref>{{cite journal|last=Puder|first=Doron|date=2015-08-21|title=Expansion of random graphs: New proofs, new results|journal=Inventiones Mathematicae |volume=201 |issue=3 |pages=845–908 |doi=10.1007/s00222-014-0560-x |arxiv=1212.5216|bibcode=2015InMat.201..845P |s2cid=253743928 }}</ref><ref>{{cite journal|last=Puder|first=Doron|year=2015|title=Expansion of random graphs: new proofs, new results|journal=[[Inventiones Mathematicae]]|language=en|volume=201|issue=3 |pages=845–908|doi=10.1007/s00222-014-0560-x|arxiv=1212.5216 |bibcode=2015InMat.201..845P |s2cid=16411939|issn=0020-9910}}</ref><ref>{{cite journal|last1=Friedman|first1=Joel|last2=Puder|first2=Doron|date=2023|title=A note on the trace method for random regular graphs|journal=[[Israel Journal of Mathematics]] |volume=256 |pages=269–282 |doi=10.1007/s11856-023-2497-5 |arxiv=2006.13605|s2cid=220042379 }}</ref> [[Adam Marcus (mathematician)|Marcus]], [[Daniel Spielman|Spielman]] and [[Nikhil Srivastava|Srivastava]],<ref name="mss13">{{cite conference|author=Adam Marcus|author1-link=Adam Marcus (mathematician)|author2=Daniel Spielman|author2-link=Daniel Spielman|author3=Nikhil Srivastava|author3-link=Nikhil Srivastava|year=2013|title=Interlacing families I: Bipartite Ramanujan graphs of all degrees|url=https://annals.math.princeton.edu/wp-content/uploads/Marcus_Spielman_SrivastavaIFI.pdf|conference=Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium}}</ref><ref name="mss15">{{cite conference|author=Adam Marcus|author1-link=Adam Marcus (mathematician)|author2=Daniel Spielman|author2-link=Daniel Spielman|author3=Nikhil Srivastava|author3-link=Nikhil Srivastava|year=2015|title=Interlacing families IV: Bipartite Ramanujan graphs of all sizes|url=https://www.cs.yale.edu/homes/spielman/PAPERS/IF4.pdf|conference=Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium}}</ref> gave a construction of [[bipartite graph|bipartite]] Ramanujan graphs based on [[#Lifts|lifts]]. In 2024 a preprint by Jiaoyang Huang, Theo McKenzieand and [[Horng-Tzer Yau]] proved that :<math>\lambda \le 2\sqrt{d-1}</math>. with the fraction of eigenvalues that hit the Alon-Boppana bound approximately 69% from proving that [[Random matrix#Edge statistics|edge universality]] holds, that is they follow a [[Tracy–Widom distribution|Tracy-Widom distribution]] associated with the [[Gaussian Orthogonal Ensemble]]<ref>{{cite arXiv | eprint=2412.20263 | last1=Huang | first1=Jiaoyang | last2=McKenzie | first2=Theo | last3=Yau | first3=Horng-Tzer | title=Ramanujan Property and Edge Universality of Random Regular Graphs | date=2024 | class=math.PR }}</ref><ref>{{Cite web |last=Sloman |first=Leila |date=2025-04-18 |title=New Proof Settles Decades-Old Bet About Connected Networks |url=https://www.quantamagazine.org/new-proof-settles-decades-old-bet-about-connected-networks-20250418/ |access-date=2025-05-06 |website=Quanta Magazine |language=en}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Expander graph
(section)
Add topic