Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler's constant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Formulas and identities == === Relation to gamma function === {{mvar|γ}} is related to the [[digamma function]] {{math|Ψ}}, and hence the [[derivative]] of the [[gamma function]] {{math|Γ}}, when both functions are evaluated at 1. Thus: <math display="block">-\gamma = \Gamma'(1) = \Psi(1). </math> This is equal to the limits: <math display="block">\begin{align}-\gamma &= \lim_{z\to 0}\left(\Gamma(z) - \frac1{z}\right) \\&= \lim_{z\to 0}\left(\Psi(z) + \frac1{z}\right).\end{align}</math> Further limit results are:{{r|Krämer2005}} <math display="block">\begin{align} \lim_{z\to 0}\frac1{z}\left(\frac1{\Gamma(1+z)} - \frac1{\Gamma(1-z)}\right) &= 2\gamma \\ \lim_{z\to 0}\frac1{z}\left(\frac1{\Psi(1-z)} - \frac1{\Psi(1+z)}\right) &= \frac{\pi^2}{3\gamma^2}. \end{align}</math> A limit related to the [[beta function]] (expressed in terms of [[gamma function]]s) is <math display="block">\begin{align} \gamma &= \lim_{n\to\infty}\left(\frac{ \Gamma\left(\frac1{n}\right) \Gamma(n+1)\, n^{1+\frac1{n}}}{\Gamma\left(2+n+\frac1{n}\right)} - \frac{n^2}{n+1}\right) \\ &= \lim\limits_{m\to\infty}\sum_{k=1}^m{m \choose k}\frac{(-1)^k}{k}\log\big(\Gamma(k+1)\big). \end{align}</math> === Relation to the zeta function === {{mvar|γ}} can also be expressed as an [[series (mathematics)|infinite sum]] whose terms involve the [[Riemann zeta function]] evaluated at positive integers: <math display="block">\begin{align}\gamma &= \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{m} \\ &= \log\frac4{\pi} + \sum_{m=2}^{\infty} (-1)^m\frac{\zeta(m)}{2^{m-1}m}.\end{align} </math> The constant <math>\gamma</math> can also be expressed in terms of the sum of the reciprocals of [[Riemann hypothesis|non-trivial zeros]] <math>\rho</math> of the zeta function:<ref name="Marek6infinity2019">{{Cite arXiv | last = Wolf | first = Marek | title = 6+infinity new expressions for the Euler-Mascheroni constant | year = 2019 | eprint = 1904.09855 | class = math.NT | quote = "The above sum is real and convergent when zeros <math>\rho</math> and complex conjugate <math>\bar{\rho}</math> are paired together and summed according to increasing absolute values of the imaginary parts of {{nowrap|<math>\rho</math>.}}"}} See formula 11 on page 3. Note the typographical error in the numerator of Wolf's sum over zeros, which should be 2 rather than 1.</ref> :<math>\gamma = \log 4\pi + \sum_{\rho} \frac{2}{\rho} - 2</math> Other series related to the zeta function include: <math display="block">\begin{align} \gamma &= \tfrac3{2}- \log 2 - \sum_{m=2}^\infty (-1)^m\,\frac{m-1}{m}\big(\zeta(m)-1\big) \\ &= \lim_{n\to\infty}\left(\frac{2n-1}{2n} - \log n + \sum_{k=2}^n \left(\frac1{k} - \frac{\zeta(1-k)}{n^k}\right)\right) \\ &= \lim_{n\to\infty}\left(\frac{2^n}{e^{2^n}} \sum_{m=0}^\infty \frac{2^{mn}}{(m+1)!} \sum_{t=0}^m \frac1{t+1} - n \log 2+ O \left (\frac1{2^{n}\, e^{2^n}}\right)\right).\end{align}</math> The error term in the last equation is a rapidly decreasing function of {{mvar|n}}. As a result, the formula is well-suited for efficient computation of the constant to high precision. Other interesting limits equaling Euler's constant are the antisymmetric limit:{{r|Sondow1998}} <math display="block">\begin{align} \gamma &= \lim_{s\to 1^+}\sum_{n=1}^\infty \left(\frac1{n^s}-\frac1{s^n}\right) \\&= \lim_{s\to 1}\left(\zeta(s) - \frac{1}{s-1}\right) \\&= \lim_{s\to 0}\frac{\zeta(1+s)+\zeta(1-s)}{2} \end{align}</math> and the following formula, established in 1898 by [[Charles Jean de la Vallée-Poussin|de la Vallée-Poussin]]: <math display="block">\gamma = \lim_{n\to\infty}\frac1{n}\, \sum_{k=1}^n \left(\left\lceil \frac{n}{k} \right\rceil - \frac{n}{k}\right)</math> where {{math|{{ceil| }}}} are [[ceiling function|ceiling]] brackets. This formula indicates that when taking any positive integer {{mvar|n}} and dividing it by each positive integer {{mvar|k}} less than {{mvar|n}}, the average fraction by which the quotient {{math|{{var|n}}/{{var|k}}}} falls short of the next integer tends to {{mvar|γ}} (rather than 0.5) as {{mvar|n}} tends to infinity. Closely related to this is the [[rational zeta series]] expression. By taking separately the first few terms of the series above, one obtains an estimate for the classical series limit: <math display="block">\gamma =\lim_{n\to\infty}\left( \sum_{k=1}^n \frac1{k} - \log n -\sum_{m=2}^\infty \frac{\zeta(m,n+1)}{m}\right),</math> where {{math|{{var|ζ}}({{var|s}}, {{var|k}})}} is the [[Hurwitz zeta function]]. The sum in this equation involves the [[harmonic number]]s, {{math|{{var|H}}{{sub|{{var|n}}}}}}. Expanding some of the terms in the Hurwitz zeta function gives: <math display="block">H_n = \log(n) + \gamma + \frac1{2n} - \frac1{12n^2} + \frac1{120n^4} - \varepsilon,</math> where {{math|0 < {{var|ε}} < {{sfrac|1|252{{var|n}}{{sup|6}}}}.}} {{mvar|γ}} can also be expressed as follows where {{mvar|A}} is the [[Glaisher–Kinkelin constant]]: <math display="block">\gamma =12\,\log(A)-\log(2\pi)+\frac{6}{\pi^2}\,\zeta'(2)</math> {{mvar|γ}} can also be expressed as follows, which can be proven by expressing the [[Riemann zeta function|zeta function]] as a [[Laurent series]]: <math display="block">\gamma=\lim_{n\to\infty}\left(-n+\zeta\left(\frac{n+1}{n}\right)\right)</math> === Relation to triangular numbers === Numerous formulations have been derived that express <math>\gamma</math> in terms of sums and logarithms of [[triangular numbers]].<ref name="Boya2008AnotherRelation">{{Cite journal | last = Boya | first = L.J. | title = Another relation between π, e, γ and ζ(n) | journal = Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | volume = 102 | pages = 199–202 | year = 2008 | issue = 2 | url = https://doi.org/10.1007/BF03191819 | doi = 10.1007/BF03191819 | bibcode = 2008RvMad.102..199B | quote = "γ/2 in (10) reflects the residual (finite part) of ζ(1)/2, of course." }} See formulas 1 and 10.</ref><ref name="Jonathan2005DoubleIntegrals">{{Cite journal | last = Sondow | first = Jonathan | title = Double Integrals for Euler's Constant and <math>\textstyle \frac{4}{\pi}</math> and an Analog of Hadjicostas's Formula | journal = The American Mathematical Monthly | volume = 112 | issue = 1 | year = 2005 | pages = 61–65 | url = https://doi.org/10.2307/30037385 | doi = 10.2307/30037385 | jstor = 30037385 | access-date = 2024-04-27 }}</ref><ref>{{Cite journal | last = Chen | first = Chao-Ping | title = Ramanujan's formula for the harmonic number | journal = Applied Mathematics and Computation | volume = 317 | year = 2018 | pages = 121–128 | issn = 0096-3003 | doi = 10.1016/j.amc.2017.08.053 | url = https://www.sciencedirect.com/science/article/pii/S0096300317306112 | access-date = 2024-04-27 }}</ref><ref>{{cite journal | last = Lodge | first = A. | title = An approximate expression for the value of 1 + 1/2 + 1/3 + ... + 1/r | journal = Messenger of Mathematics | volume = 30 | year = 1904 | pages = 103–107 | url = https://books.google.com/books?id=K4daAAAAYAAJ&dq=%22An%20approximate%20expression%20for%20the%20value%20of%201%2B%22&pg=PA103 }}</ref> One of the earliest of these is a formula<ref>{{Cite arXiv | last = Villarino | first = Mark B. | title = Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number | year = 2007 | eprint = 0707.3950 | class = math.CA | quote = It would also be interesting to develop an expansion for n! into powers of m, a new ''Stirling'' expansion, as it were. }} See formula 1.8 on page 3.</ref><ref>{{Cite journal | last = Mortici | first = Cristinel | year = 2010 | title = On the Stirling expansion into negative powers of a triangular number | journal = Math. Commun. | volume = 15 | pages = 359–364 | url = https://www.researchgate.net/publication/228562533 | doi = }}</ref> for the {{nowrap|<math>n</math>th}} [[harmonic number]] attributed to [[Srinivasa Ramanujan]] where <math>\gamma</math> is related to <math>\textstyle \ln 2T_{k}</math> in a series that considers the powers of <math>\textstyle \frac{1}{T_{k}}</math> (an earlier, less-generalizable proof<ref>{{Cite journal |last=Cesàro |first=E. |title=Sur la série harmonique |journal=Nouvelles annales de mathématiques: Journal des candidats aux écoles polytechnique et normale |volume=4 |pages=295–296 |year=1885 |url=http://eudml.org/doc/100057 |language=fr |publisher=Carilian-Goeury et Vor Dalmont}}</ref><ref>{{cite book | last = Bromwich | first = Thomas John I'Anson | title = An Introduction to the Theory of Infinite Series | publisher = American Mathematical Society | year = 2005 | orig-date = 1908 | edition = 3rd | location = United Kingdom | url = https://www.dbraulibrary.org.in/RareBooks/An%20introduction%20to%20the%20theory%20of%20infinite%20series.pdf | page = 460 }} See exercise 18.</ref> by [[Ernesto Cesàro]] gives the first two terms of the series, with an error term): :<math>\begin{align} \gamma &= H_u - \frac{1}{2} \ln 2T_u - \sum_{k=1}^{v}\frac{R(k)}{T_{u}^{k}}-\Theta_{v}\,\frac{R(v+1)}{T_{u}^{v+1}} \end{align}</math> From [[Stirling's approximation]]<ref name="Boya2008AnotherRelation"/><ref>{{cite book | last1 = Whittaker | first1 = E. | last2 = Watson | first2 = G. | title = A Course of Modern Analysis | edition = 5th | orig-date = 1902 | year = 2021 | page = 271, 275 | isbn = 9781316518939 | doi = 10.1017/9781009004091 }} See Examples 12.21 and 12.50 for exercises on the derivation of the integral form <math>\textstyle \int_{-1}^{0} \ln\Gamma(z+1)\,dz</math> of the series <math>\textstyle \sum_{k=1}^{n} \frac{\zeta(k)}{110_{k}} = \ln(\sqrt{2\pi})</math>.</ref> follows a similar series: :<math>\gamma = \ln 2\pi - \sum_{k=2}^{\infty} \frac{\zeta(k)}{T_{k}}</math> The series of inverse triangular numbers also features in the study of the [[Basel problem]]{{sfn|Lagarias|2013|p=13}}<ref>{{cite journal |last=Nelsen |first=R. B. |title=Proof without Words: Sum of Reciprocals of Triangular Numbers |journal=Mathematics Magazine |volume=64 |issue=3 |year=1991 |pages=167|doi=10.1080/0025570X.1991.11977600 }}</ref> posed by [[Pietro Mengoli]]. Mengoli proved that <math>\textstyle \sum_{k = 1}^\infty \frac{1}{2T_k} = 1</math>, a result [[Jacob Bernoulli]] later used to estimate the [[Basel_problem#The_Riemann_zeta_function|value]] of <math>\zeta(2)</math>, placing it between <math>1</math> and <math>\textstyle \sum_{k = 1}^\infty \frac{2}{2T_k} = \sum_{k = 1}^\infty \frac{1}{T_{k}} = 2</math>. This identity appears in a formula used by [[Bernhard Riemann]] to compute [[Eulers_constant#Relation_to_the_zeta_function|roots of the zeta function]],<ref>{{Cite book | last = Edwards | first = H. M. | title = Riemann's Zeta Function | publisher = Academic Press | year = 1974 | series = Pure and Applied Mathematics, Vol. 58 | pages = 67, 159}}</ref> where <math>\gamma</math> is expressed in terms of the sum of roots <math>\rho</math> plus the difference between Boya's expansion and the series of exact [[Unit fraction|unit fractions]] <math>\textstyle \sum_{k = 1}^{\infty} \frac{1}{T_{k}}</math>: :<math>\gamma - \ln 2 = \ln 2\pi + \sum_{\rho} \frac{2}{\rho} - \sum_{k = 1}^{\infty} \frac{1}{T_k}</math> === Integrals === {{mvar|γ}} equals the value of a number of definite [[integral]]s: <math display="block">\begin{align} \gamma &= - \int_0^\infty e^{-x} \log x \,dx \\ &= -\int_0^1\log\left(\log\frac 1 x \right) dx \\ &= \int_0^\infty \left(\frac1{e^x-1}-\frac1{x\cdot e^x} \right)dx \\ &= \int_0^1\frac{1-e^{-x}}{x} \, dx -\int_1^\infty \frac{e^{-x}}{x}\, dx\\ &= \int_0^1\left(\frac1{\log x} + \frac1{1-x}\right)dx\\ &= \int_0^\infty \left(\frac1{1+x^k}-e^{-x}\right)\frac{dx}{x},\quad k>0\\ &= 2\int_0^\infty \frac{e^{-x^2}-e^{-x}}{x} \, dx ,\\ &= \log\frac{\pi}{4}-\int_0^\infty \frac{\log x}{\cosh^2x} \, dx ,\\ &= \int_0^1 H_x \, dx, \\ &= \frac{1}{2}+\int_{0}^{\infty}\log\left(1+\frac{\log\left(1+\frac{1}{t}\right)^{2}}{4\pi^{2}}\right)dt \\ &= 1-\int_0^1 \{1/x\} dx \end{align} </math> where {{math|{{var|H}}{{sub|{{var|x}}}}}} is the [[Harmonic number#Harmonic numbers for real and complex values|fractional harmonic number]], and <math>\{1/x\}</math> is the [[fractional part]] of <math>1/x</math>. The third formula in the integral list can be proved in the following way: <math display="block">\begin{align} &\int_0^{\infty} \left(\frac{1}{e^x - 1} - \frac{1}{x e^x} \right) dx = \int_0^{\infty} \frac{e^{-x} + x - 1}{x[e^x -1]} dx = \int_0^{\infty} \frac{1}{x[e^x - 1]} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}x^{m+1}}{(m+1)!} dx \\[2pt] &= \int_0^{\infty} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}x^m}{(m+1)![e^x -1]} dx = \sum_{m = 1}^{\infty} \int_0^{\infty} \frac{(-1)^{m+1}x^m}{(m+1)![e^x -1]} dx = \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{(m+1)!} \int_0^{\infty} \frac{x^m}{e^x - 1} dx \\[2pt] &= \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{(m+1)!} m!\zeta(m+1) = \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\zeta(m+1) = \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1} \sum_{n = 1}^{\infty}\frac{1}{n^{m+1}} = \sum_{m = 1}^{\infty} \sum_{n = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\frac{1}{n^{m+1}} \\[2pt] &= \sum_{n = 1}^{\infty} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\frac{1}{n^{m+1}} = \sum_{n = 1}^{\infty} \left[\frac{1}{n} - \log\left(1+\frac{1}{n}\right)\right] = \gamma \end{align}</math> The integral on the second line of the equation is the definition of the [[Riemann zeta function]], which is {{math|{{var|m}}!{{var|ζ}}({{var|m}} + 1)}}. Definite integrals in which {{mvar|γ}} appears include:<ref name=":3">{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant |url=https://mathworld.wolfram.com/Euler-MascheroniConstant.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}</ref><ref name=":1">{{Cite journal |last=Blagouchine |first=Iaroslav V. |date=2014-10-01 |title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results |url=https://link.springer.com/article/10.1007/s11139-013-9528-5 |journal=The Ramanujan Journal |language=en |volume=35 |issue=1 |pages=21–110 |doi=10.1007/s11139-013-9528-5 |issn=1572-9303}}</ref> <math display="block">\begin{align} \int_0^\infty e^{-x^2} \log x \,dx &= -\frac{(\gamma+2\log 2)\sqrt{\pi}}{4} \\ \int_0^\infty e^{-x} \log^2 x \,dx &= \gamma^2 + \frac{\pi^2}{6} \\ \int_0^\infty \frac{e^{-x}\log x}{e^x +1} \,dx &= \frac12 \log^2 2 - \gamma \end{align}</math> We also have [[Eugène Charles Catalan|Catalan]]'s 1875 integral{{r|SondowZudilin2006}} <math display="block">\gamma = \int_0^1 \left(\frac1{1+x}\sum_{n=1}^\infty x^{2^n-1}\right)\,dx.</math> One can express {{mvar|γ}} using a special case of [[Hadjicostas's formula]] as a [[Multiple integral#Double integral|double integral]]{{r|Sondow2003a|Sondow2005}} with equivalent series: <math display="block">\begin{align} \gamma &= \int_0^1 \int_0^1 \frac{x-1}{(1-xy)\log xy}\,dx\,dy \\ &= \sum_{n=1}^\infty \left(\frac 1 n -\log\frac{n+1} n \right). \end{align}</math> An interesting comparison by Sondow{{r|Sondow2005}} is the double integral and alternating series <math display="block">\begin{align} \log\frac 4 \pi &= \int_0^1 \int_0^1 \frac{x-1}{(1+xy)\log xy} \,dx\,dy \\ &= \sum_{n=1}^\infty \left((-1)^{n-1}\left(\frac 1 n -\log\frac{n+1} n \right)\right). \end{align}</math> It shows that {{math|log {{sfrac|4|π}}}} may be thought of as an "alternating Euler constant". The two constants are also related by the pair of series{{r|Sondow2005a}} <math display="block">\begin{align} \gamma &= \sum_{n=1}^\infty \frac{N_1(n) + N_0(n)}{2n(2n+1)} \\ \log\frac4{\pi} &= \sum_{n=1}^\infty \frac{N_1(n) - N_0(n)}{2n(2n+1)} , \end{align}</math> where {{math|{{var|N}}{{sub|1}}({{var|n}})}} and {{math|{{var|N}}{{sub|0}}({{var|n}})}} are the number of 1s and 0s, respectively, in the [[Binary number|base 2]] expansion of {{mvar|n}}. === Series expansions === In general, <math display="block"> \gamma = \lim_{n \to \infty}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3} + \ldots + \frac{1}{n} - \log(n+\alpha) \right) \equiv \lim_{n \to \infty} \gamma_n(\alpha) </math> for any {{math|{{var|α}} > −{{var|n}}}}. However, the rate of convergence of this expansion depends significantly on {{mvar|α}}. In particular, {{math|{{var|γ}}{{sub|{{var|n}}}}(1/2)}} exhibits much more rapid convergence than the conventional expansion {{math|{{var|γ}}{{sub|{{var|n}}}}(0)}}.{{r|DeTemple1993}}{{sfn|Havil|2003|pp=75–8}} This is because <math display="block"> \frac{1}{2(n+1)} < \gamma_n(0) - \gamma < \frac{1}{2n}, </math> while <math display="block"> \frac{1}{24(n+1)^2} < \gamma_n(1/2) - \gamma < \frac{1}{24n^2}. </math> Even so, there exist other series expansions which converge more rapidly than this; some of these are discussed below. Euler showed that the following [[infinite series]] approaches {{mvar|γ}}: <math display="block">\gamma = \sum_{k=1}^\infty \left(\frac 1 k - \log\left(1+\frac 1 k \right)\right).</math> The series for {{mvar|γ}} is equivalent to a series [[Niels Nielsen (mathematician)|Nielsen]] found in 1897:{{r|Krämer2005}}{{sfn|Blagouchine|2016}} <math display="block">\gamma = 1 - \sum_{k=2}^\infty (-1)^k\frac{\left\lfloor\log_2 k\right\rfloor}{k+1}.</math> In 1910, [[Giovanni Vacca (mathematician)|Vacca]] found the closely related series{{r|Vacca1910|Glaisher1910|Hardy1912|Vacca1926|Kluyver1927|Krämer2005|Blagouchine2016}} <math display="block">\begin{align} \gamma & = \sum_{k=1}^\infty (-1)^k\frac{\left\lfloor\log_2 k\right\rfloor} k \\[5pt] & = \tfrac12-\tfrac13 + 2\left(\tfrac14 - \tfrac15 + \tfrac16 - \tfrac17\right) + 3\left(\tfrac18 - \tfrac19 + \tfrac1{10} - \tfrac1{11} + \cdots - \tfrac1{15}\right) + \cdots, \end{align}</math> where {{math|log{{sub|2}}}} is the [[binary logarithm|logarithm to base 2]] and {{math|{{floor| }}}} is the [[Floor and ceiling functions|floor function]]. This can be generalized to:<ref>{{Citation |last1=Pilehrood |first1=Khodabakhsh Hessami |title=Vacca-type series for values of the generalized-Euler-constant function and its derivative |date=2008-08-04 |last2=Pilehrood |first2=Tatiana Hessami|arxiv=0808.0410 }}</ref> <math display="block">\gamma= \sum_{k=1}^\infty \frac{\left\lfloor\log_B k\right\rfloor}{k} \varepsilon(k)</math>where:<math display="block">\varepsilon(k)= \begin{cases} B-1, &\text{if } B\mid n \\ -1, &\text{if }B\nmid n \end{cases}</math> In 1926 Vacca found a second series: <math display="block">\begin{align} \gamma + \zeta(2) & = \sum_{k=2}^\infty \left( \frac1{\left\lfloor\sqrt{k}\right\rfloor^2} - \frac1{k}\right) \\[5pt] & = \sum_{k=2}^\infty \frac{k - \left\lfloor\sqrt{k}\right\rfloor^2}{k \left\lfloor \sqrt{k} \right\rfloor^2} \\[5pt] &= \frac12 + \frac23 + \frac1{2^2}\sum_{k=1}^{2\cdot 2} \frac{k}{k+2^2} + \frac1{3^2}\sum_{k=1}^{3\cdot 2} \frac{k}{k+3^2} + \cdots \end{align}</math> From the [[Carl Johan Malmsten|Malmsten]]–[[Ernst Kummer|Kummer]] expansion for the logarithm of the gamma function<ref name=":1" /> we get: <math display="block">\gamma = \log\pi - 4\log\left(\Gamma(\tfrac34)\right) + \frac 4 \pi \sum_{k=1}^\infty (-1)^{k+1}\frac{\log(2k+1)}{2k+1}.</math> Ramanujan, in his [[Ramanujan's lost notebook|lost notebook]] gave a series that approaches {{mvar|γ}}{{r|Berndt2008}}: <math display="block">\gamma = \log 2 - \sum_{n=1}^{\infty} \sum_{k=\frac{3^{n-1}+1}{2}}^{\frac{3^{n}-1}{2}} \frac{2n}{(3k)^3-3k}</math> An important expansion for Euler's constant is due to [[Gregorio Fontana|Fontana]] and [[Lorenzo Mascheroni|Mascheroni]] <math display="block">\gamma = \sum_{n=1}^\infty \frac{|G_n|}{n} = \frac12 + \frac1{24} + \frac1{72} + \frac{19}{2880} + \frac3{800} + \cdots,</math> where {{math|{{var|G}}{{sub|{{var|n}}}}}} are [[Gregory coefficients]].{{r|Krämer2005|Blagouchine2016|Blagouchine2018}} This series is the special case {{math|1={{var|k}} = 1}} of the expansions <math display="block">\begin{align} \gamma &= H_{k-1} - \log k + \sum_{n=1}^{\infty}\frac{(n-1)!|G_n|}{k(k+1) \cdots (k+n-1)} && \\ &= H_{k-1} - \log k + \frac1{2k} + \frac1{12k(k+1)} + \frac1{12k(k+1)(k+2)} + \frac{19}{120k(k+1)(k+2)(k+3)} + \cdots && \end{align}</math> convergent for {{math|1={{var|k}} = 1, 2, ...}} A similar series with the Cauchy numbers of the second kind {{math|{{var|C}}{{sub|{{var|n}}}}}} is{{r|Blagouchine2016|Alabdulmohsin2018_1478}} <math display="block">\gamma = 1 - \sum_{n=1}^\infty \frac{C_{n}}{n \, (n+1)!} =1- \frac{1}{4} -\frac{5}{72} - \frac{1}{32} - \frac{251}{14400} - \frac{19}{1728} - \ldots</math> Blagouchine (2018) found an interesting generalisation of the Fontana–Mascheroni series <math display="block">\gamma=\sum_{n=1}^\infty\frac{(-1)^{n+1}}{2n}\Big\{\psi_{n}(a)+ \psi_{n}\Big(-\frac{a}{1+a}\Big)\Big\}, \quad a>-1</math> where {{math|{{var|ψ}}{{sub|{{var|n}}}}({{var|a}})}} are the [[Bernoulli polynomials of the second kind]], which are defined by the generating function <math display="block"> \frac{z(1+z)^s}{\log(1+z)}= \sum_{n=0}^\infty z^n \psi_n(s) ,\qquad |z|<1. </math> For any rational {{mvar|a}} this series contains rational terms only. For example, at {{math|1={{var|a}} = 1}}, it becomes{{r|OEIS_A302120|OEISA302121}} <math display="block">\gamma=\frac{3}{4} - \frac{11}{96} - \frac{1}{72} - \frac{311}{46080} - \frac{5}{1152} - \frac{7291}{2322432} - \frac{243}{100352} - \ldots</math> Other series with the same polynomials include these examples: <math display="block">\gamma= -\log(a+1) - \sum_{n=1}^\infty\frac{(-1)^n \psi_{n}(a)}{n},\qquad \Re(a)>-1 </math> and <math display="block">\gamma= -\frac{2}{1+2a} \left\{\log\Gamma(a+1) -\frac{1}{2}\log(2\pi) + \frac{1}{2} + \sum_{n=1}^\infty\frac{(-1)^n \psi_{n+1}(a)}{n}\right\},\qquad \Re(a)>-1 </math> where {{math|Γ({{var|a}})}} is the [[gamma function]].{{r|Blagouchine2018}} A series related to the Akiyama–Tanigawa algorithm is <math display="block">\gamma= \log(2\pi) - 2 - 2 \sum_{n=1}^\infty\frac{(-1)^n G_{n}(2)}{n}= \log(2\pi) - 2 + \frac{2}{3} + \frac{1}{24}+ \frac{7}{540} + \frac{17}{2880}+ \frac{41}{12600} + \ldots </math> where {{math|{{var|G}}{{sub|{{var|n}}}}(2)}} are the [[Gregory coefficients]] of the second order.{{r|Blagouchine2018}} As a series of [[prime number]]s: <math display="block">\gamma = \lim_{n\to\infty}\left(\log n - \sum_{p\le n}\frac{\log p}{p-1}\right).</math> === Asymptotic expansions === {{mvar|γ}} equals the following asymptotic formulas (where {{math|{{var|H}}{{sub|{{var|n}}}}}} is the {{mvar|n}}th [[harmonic number]]): *<math display="inline">\gamma \sim H_n - \log n - \frac1{2n} + \frac1{12n^2} - \frac1{120n^4} + \cdots</math> (''Euler'') *<math display="inline">\gamma \sim H_n - \log\left({n + \frac1{2} + \frac1{24n} - \frac1{48n^2} + \cdots}\right)</math> (''Negoi'') *<math display="inline">\gamma \sim H_n - \frac{\log n + \log(n+1)}{2} - \frac1{6n(n+1)} + \frac1{30n^2(n+1)^2} - \cdots</math> (''[[Ernesto Cesàro|Cesàro]]'') The third formula is also called the Ramanujan expansion. Alabdulmohsin derived closed-form expressions for the sums of errors of these approximations.{{r|Alabdulmohsin2018_1478}} He showed that (Theorem A.1): <math display="block">\begin{align} \sum_{n=1}^\infty \Big(\log n +\gamma - H_n + \frac{1}{2n}\Big) &= \frac{\log (2\pi)-1-\gamma}{2} \\ \sum_{n=1}^\infty \Big(\log \sqrt{n(n+1)} +\gamma - H_n \Big) &= \frac{\log (2\pi)-1}{2}-\gamma \\ \sum_{n=1}^\infty (-1)^n\Big(\log n +\gamma - H_n\Big) &= \frac{\log \pi-\gamma}{2} \end{align}</math> === Exponential === The constant {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} is important in number theory. Its numerical value is:{{r|OEIS_A073004}} {{block indent|{{gaps|1.78107|24179|90197|98523|65041|03107|17954|91696|45214|30343|...}}.}} {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} equals the following [[limit of a sequence|limit]], where {{math|{{var|p}}{{sub|{{var|n}}}}}} is the {{mvar|n}}th [[prime number]]: <math display="block">e^\gamma = \lim_{n\to\infty}\frac1{\log p_n} \prod_{i=1}^n \frac{p_i}{p_i-1}.</math> This restates the third of [[Mertens' theorems]].{{r|excursions}} We further have the following product involving the three constants {{math|{{var|e}}}}, {{math|{{var|π}}}} and {{math|{{var|γ}}}}:<ref name=":9">{{Cite web |last=Weisstein |first=Eric W. |title=Mertens Theorem |url=https://mathworld.wolfram.com/MertensTheorem.html |access-date=2024-10-08 |website=mathworld.wolfram.com |language=en}}</ref> <math display="block">\frac{\pi^2}{6e^\gamma}=\lim_{n\to\infty}\frac1{\log p_n} \prod_{i=1}^n \frac{p_i}{p_i+1}.</math> Other [[infinite product]]s relating to {{math|{{var|e}}{{i sup|1px|{{var|γ}}}}}} include: <math display="block">\begin{align} \frac{e^{1+\frac{\gamma}{2}}}{\sqrt{2\pi}} &= \prod_{n=1}^\infty e^{-1+\frac1{2n}}\left(1+\frac1{n}\right)^n \\ \frac{e^{3+2\gamma}}{2\pi} &= \prod_{n=1}^\infty e^{-2+\frac2{n}}\left(1+\frac2{n}\right)^n. \end{align}</math> These products result from the [[Barnes G-function|Barnes {{mvar|G}}-function]]. In addition, <math display="block">e^{\gamma} = \sqrt{\frac2{1}} \cdot \sqrt[3]{\frac{2^2}{1\cdot 3}} \cdot \sqrt[4]{\frac{2^3\cdot 4}{1\cdot 3^3}} \cdot \sqrt[5]{\frac{2^4\cdot 4^4}{1\cdot 3^6\cdot 5}} \cdots</math> where the {{mvar|n}}th factor is the {{math|({{var|n}} + 1)}}th root of <math display="block">\prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}}.</math> This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow using [[hypergeometric function]]s.{{r|Sondow2003}} It also holds that{{r|ChoiSrivastava2010}} <math display="block">\frac{e^\frac{\pi}{2}+e^{-\frac{\pi}{2}}}{\pi e^\gamma}=\prod_{n=1}^\infty\left(e^{-\frac{1}{n}}\left(1+\frac{1}{n}+\frac{1}{2n^2}\right)\right).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler's constant
(section)
Add topic