Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Enzyme
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Dynamics === {{See also|Protein dynamics}} Enzymes are not rigid, static structures; instead they have complex internal dynamic motions β that is, movements of parts of the enzyme's structure such as individual amino acid residues, groups of residues forming a [[turn (biochemistry)|protein loop]] or unit of [[protein secondary structure|secondary structure]], or even an entire [[protein domain]]. These motions give rise to a [[conformational ensemble]] of slightly different structures that interconvert with one another at [[thermodynamic equilibrium|equilibrium]]. Different states within this ensemble may be associated with different aspects of an enzyme's function. For example, different conformations of the enzyme [[dihydrofolate reductase]] are associated with the substrate binding, catalysis, cofactor release, and product release steps of the catalytic cycle,<ref>{{cite journal | vauthors = Ramanathan A, Savol A, Burger V, Chennubhotla CS, Agarwal PK | title = Protein conformational populations and functionally relevant substates | journal = Accounts of Chemical Research | volume = 47 | issue = 1 | pages = 149β156 | date = January 2014 | pmid = 23988159 | doi = 10.1021/ar400084s | osti = 1565147 }}</ref> consistent with [[catalytic resonance theory]]. The transitions between the different conformations during the catalytic cycle involve internal [[Viscoelasticity|viscoelatic]] motion that is facilitated by high-[[Strain (mechanics)|strain]] regions where amino acids are rearranged.<ref>{{Cite journal |last=Weinreb |first=Eyal |last2=McBride |first2=John M. |last3=Siek |first3=Marta |last4=Rougemont |first4=Jacques |last5=Renault |first5=Renaud |last6=Peleg |first6=Yoav |last7=Unger |first7=Tamar |last8=Albeck |first8=Shira |last9=Fridmann-Sirkis |first9=Yael |last10=Lushchekina |first10=Sofya |last11=Sussman |first11=Joel L. |last12=Grzybowski |first12=Bartosz A. |last13=Zocchi |first13=Giovanni |last14=Eckmann |first14=Jean-Pierre |last15=Moses |first15=Elisha |date=2025-03-28 |title=Enzymes as viscoelastic catalytic machines |url=https://www.nature.com/articles/s41567-025-02825-9 |journal=Nature Physics |language=en |pages=1β12 |doi=10.1038/s41567-025-02825-9 |issn=1745-2481}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Enzyme
(section)
Add topic