Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ellipse
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Tangent === An arbitrary line <math>g</math> intersects an ellipse at 0, 1, or 2 points, respectively called an ''exterior line'', ''tangent'' and ''secant''. Through any point of an ellipse there is a unique tangent. The tangent at a point <math>(x_1,\, y_1)</math> of the ellipse <math>\tfrac{x^2}{a^2} + \tfrac{y^2}{b^2} = 1</math> has the coordinate equation: <math display="block">\frac{x_1}{a^2}x + \frac{y_1}{b^2}y = 1.</math> A vector [[parametric equation]] of the tangent is: <math display="block">\vec x = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + s \left(\begin{array}{r} -y_1 a^2 \\ x_1 b^2 \end{array}\right) , \quad s \in \R. </math> '''Proof:''' Let <math>(x_1,\, y_1)</math> be a point on an ellipse and <math display="inline">\vec{x} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + s \begin{pmatrix} u \\ v \end{pmatrix}</math> be the equation of any line <math>g</math> containing <math>(x_1,\, y_1)</math>. Inserting the line's equation into the ellipse equation and respecting <math display="inline">\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1</math> yields: <math display="block"> \frac{\left(x_1 + su\right)^2}{a^2} + \frac{\left(y_1 + sv\right)^2}{b^2} = 1\ \quad\Longrightarrow\quad 2s\left(\frac{x_1u}{a^2} + \frac{y_1v}{b^2}\right) + s^2\left(\frac{u^2}{a^2} + \frac{v^2}{b^2}\right) = 0\ .</math> There are then cases: # <math>\frac{x_1}{a^2}u + \frac{y_1}{b^2}v = 0.</math> Then line <math>g</math> and the ellipse have only point <math>(x_1,\, y_1)</math> in common, and <math>g</math> is a tangent. The tangent direction has [[normal (geometry)|perpendicular vector]] <math>\begin{pmatrix} \frac{x_1}{a^2} & \frac{y_1}{b^2} \end{pmatrix}</math>, so the tangent line has equation <math display="inline">\frac{x_1}{a^2}x + \tfrac{y_1}{b^2}y = k</math> for some <math>k</math>. Because <math>(x_1,\, y_1)</math> is on the tangent and the ellipse, one obtains <math>k = 1</math>. # <math>\frac{x_ 1}{a^2}u + \frac{y_1}{b^2}v \ne 0.</math> Then line <math>g</math> has a second point in common with the ellipse, and is a secant. Using (1) one finds that <math>\begin{pmatrix} -y_1 a^2 & x_1 b^2 \end{pmatrix}</math> is a tangent vector at point <math>(x_1,\, y_1)</math>, which proves the vector equation. If <math>(x_1, y_1)</math> and <math>(u, v)</math> are two points of the ellipse such that <math display="inline">\frac{x_1u}{a^2} + \tfrac{y_1v}{b^2} = 0</math>, then the points lie on two ''conjugate diameters'' (see [[#Conjugate diameters|below]]). (If <math>a = b</math>, the ellipse is a circle and "conjugate" means "orthogonal".)
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ellipse
(section)
Add topic